| 研究生: |
林筱琪 Lin, Shiau-Chi |
|---|---|
| 論文名稱: |
氮化物二極體中電流散佈層之研究與設計 The investigation and design of current spreading in nitride-based LEDs |
| 指導教授: |
蘇炎坤
Su, Yan-Kuin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 橫向電流阻障 、氮化鋁鎵-氮化鎵 超晶格 、發光二極體 、電流散佈 |
| 外文關鍵詞: | current spreading, lateral current blocking, light-emitting diodes, AlGaN/GaN superlattice |
| 相關次數: | 點閱:121 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,由於氮化鎵系列發光二極體商品的蓬勃發展以及全球照明市場的需求,發光二極體越來越受到重視。在本論文中,使用有機金屬氣相磊晶技術展現氮化鎵系列材料特性以及改變發光二極體結構來達到元件特性的改善。
首先使用了Delta的方式參雜鎂在氮化鎵材料中,形成P型的氮化鎵材料並討論其電特性及表面形態。Delta參雜的P型氮化鎵展現了良好的表面平坦度以及電洞濃度。另外,也成長了不同結構的P型氮化鋁鎵-氮化鎵超晶格結構,由電特性、表面型態來討論其結果。而在發光二極體元件的研究中,吾人在發光二極體的主動層與P型氮化鎵之間成長P型氮化鋁鎵-氮化鎵超晶格結構以及使用橫向電流阻障的結構來改善電流在二極體中散佈的情形,並討論之。由結果得知,P型氮化鋁鎵-氮化鎵超晶格以及橫向電流阻障結構可以達到改善電流散佈的作用;而藉由在N型與P型電極間蝕刻出的橫向電流阻障結構,其發光二極體特性顯示出在20mA時光強度有達到9.2%的改善,且操作電壓不受影響。
Recently, due to the rising progress for the products of nitrite-based LEDs and the requirement of global market of the illumination, light-emitting diodes become more and more important. In this thesis, the improved properties of GaN-based materials by metalorganic vapor phase epitaxy (MOVPE) technique and devices improved by changing the structure are demonstrated.
First, we demonstrate p-GaN by delta dope technique and different structure of p-AlGaN/GaN superlattice, and then we discuss the electrical property and the surface morphology. The delta-doping p-GaN perform good surface quality and the hole concentration. In this thesis, we investigate two methods to spread the current. First is the p-AlGaN/GaN SLs between p-GaN and the active region, and second is the lateral current blocking holes. Both the p-AlGaN/GaN SLs and the lateral current blocking hole perform the better current spreading. The light intensity of InGaN/GaN light-emitting diodes (LEDs) was improved 9.2% at 20mA by introducing current blocking hole between n-bonding pad and p-bonding pad while the forward voltage is almost the same.
[1] J, Nishizawa, K. Itoh, Y. Okuno, and F. Sakurai, “Blue light emission from ZnSe p-n junctions”, J. Appl. Phys. Vol. 57, No. 6, Page(s): 2210-2216 (1985).
[2] W. Xie, D. C. Grillo, R. L. Gunshor, M. Kobayashi, H. Jeon, J. Ding, A. V. Nurmikko, G. C Hua, and N. Ostuka, “Room temperature blue light emitting p-n diodes from Zn(S,Se)-based multiple quantum well structures
”, Appl. Phys. Lett. Vol. 60, No. 16, Page(s): 1999-2001 (1992).
[3] D. E. Eason, Z. Yu, W. C. Hughes, W. H. Roland, C. Boney, J. W. Cook, Jr., J. F. Schetzina, G. Cantwell and W. C. Harasch, “High-brightness blue and green light-emitting diodes”, Appl. Phys. Lett. Vol. 66, No. 2, Page(s): 115-117 (1995).
[4] K. Koga, T. Yamaguchi, Prog. Crystal Growth and Charact. 23, 127 (1991).
[5] J. Edmond, H. Kong and V. Dmitrieve, Inst. Phys. Con. Ser. 137, 515 (1994).
[6] J.I. Pankove, E.A. Miller, and J.E. Berkeyheisr, RCA Review 32, 383 (1971).
[7] M. G. Craford, Circuits & Devices. Page 24 (September 1992)
[8] H. Sugawara, K.Itaya, and G. Hatakoshi, “Emission Properties of InGaAlP Visible Light-Emitting Diodes Employing a Multiquantum-Well Active Layer”, Jpn. J. Appl. Phys. Vol. 33, No. 10, Page(s): 5784-5787, (1994).
[9] S. Fuke, H. Teshigawara, K. Kuwahara, Y. Takano, T. Ito, M. Yanagihara, and K. Ohtsuka, “Influences of initial nitridation and buffer layer deposition on the morphology of a (0001) GaN layer grown on sapphire substrates,” J. Appl. Phys., Vol.83, No.2, Page(s): 764-767, (1998).
[10] Hyunsoo Kim, Seong-Ju Park, and Hyunsang Hwang, “Lateral current transport path, a model for GaN-based light-emitting diodes: Applications to practical device designs,” Appl. Phys. Lett., Vol. 81, No. 7, Page(s): 1326-1328, (2002).
[11] An-Bang Wang and Wei-Chou Hsu, “Investigation of InGaN/GaN multiple-quantumwell blue light emitting diode with InGaN/GaN Superlattices current spreading layer”, Page: 34, (2005).
[12] A. Yasan and M. Razeghi, “III-nitride ultraviolet light emitting sources,” in Optoelectronic Device: III-Nitrides, M. Razeghi and M. Henini, Eds., Kidlington, Oxford: Elsevier Ltd., page: 218, (2004).
[13] M. Razeghi and M. Henini, Optoelectronic Devices: III-Nitrides,
Kidlington, Oxford: Elsevier Ltd, Page: 3, (2004).
[14] R. J. Molnar, R. Singh, and T. Moustakas, “Blue-violet light emitting gallium nitride p-n junctions grown by electron cyclotron resonance-assisted molecular beam epitaxy” Appl. Phys. Lett., vol. 66, No.3, Page(s): 268-270, (1995).
[15] Yu-Ling Hsu, “The study of GaN photodetectors with multi-pair SiN/GaN buffer layer”, Page: 26, (2008).
[16] Z. C. Feng, III-Nitride Semiconductor Materials, World Scientific Publishing Company, Page: 44, (2006).
[17] H. M. Hanasevit, “Single-crystal gallium arsenide on insulating substrate”, Appl. Phys. Lett., Vol. 12, No. 4, Page(s): 156-159, (1968).
[18] H. P. Maruska and J. J. Tietjen, “The preparation and properties of vapour-deposited single-crystal-line GaN”, Appl. Phys. Lett., Vol. 15, No. 10, Page(s): 327-329, (1969).
[19] H. M. Hanasevit, F. Erdmann and W. Simpson, “The Use of Metalorganics in the Preparation of Semiconductor Materials”, J. Electrochem. Soc, Vol. 118, No.11, Page(s): 1864-1868, (1971).
[20] S. P. DenBaar, B. Y. Maa, P. D. Dapkus and H. C. Lee, “Homogeneous and heterogeneous thermal decomposition rates of trimethylgallium and arsine and their relevance to the growth of GaAs by MOCVD”, J. Cryst. Growth Vol. 77, Page(s): 188-193, (1986).
[21] D. KEITH BOWEN and BRIAN K. TANNER, “High Resolution X-ray Diffractometry and Topography”, Page: 2, (1998).
[22] 陳哲雄,林俊勳,林紋瑞,吳靖宙,張憲彰, “原子力顯微鏡成像原理
與中文簡易操作手冊”, Page: 5
[23] Timothy H. Gfroerer, in Encyclopedia of Analytical Chemistry edited by R.A. Meyers,“Photoluminescence in Analysis of Surfaces and Interfaces”, John Wiley & Sons Ltd, Chichester, Page(s): 9209–9231, (2000).
[24] Rubin M, Newman N, Chan JS, Fu TC, Ross JT. “P-type gallium nitride by reactive ion-beam molecular beam epitaxy with ion implantation, diffusion, or coevaporation of Mg”, Appl Phys Lett , Vol. 64, No. 1, Page(s):64-66, (1994).
[25] Gotz W, Johnson NM, Walker J, Bour DP, Amano H, Akasaki I. “Hydrogen passivation of Mg acceptors in GaN grown by metalorganic chemical vapor deposition”, Appl Phys Lett, Vol. 67, No. 18, Page(s):2666-2668, (1995).
[26] Van Vechten JA, David Zook J, Hornig RD, Goldenberg B. “Defeating Compensation in Wide Gap Semiconductors by Growing in H that in Removed by Low Temperature De-Ionizing Radiation”, Jpn J Appl Phys,Vol. 31, No. 11, Page(s):3662-3663, (1992).
[27] Shuji Nakamura, Takashi Mukai, Masayuki Senoh and Naruhito Iwasa. “Thermal Annealing Effects on P-Type Mg-Doped GaN Films”, Jpn J Appl Phys, Vol. 31, Page(s):139-142, (1992).
[28] AMANO H, KITO M, HIRAMATSU K, AKASAKI I. “P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation”, Jpn J Appl Phys, Vol. 28, Page(s):L2112-2114, (1989).
[29] Quentin P. Herr, Andrew D. Smith, and Michael S. Wire, “High speed data link between digital superconductor chips”, Appl. Phys. Lett, Vol. 80, No. 17, Page(s):3210-3212, (2002).
[30] E.F. Schubert, J.M. Kuo, R.F. Kopf, H.S. Luftman, L.C. Hopkins, N.J. Sauer, “Beryllium δ doping of GaAs grown by molecular beam epitaxy”, J. Appl. Phys. Vol. 67, No.4, Page(s):1969-1979, (1990).
[31] O. Contreras, F.A. Ponce, J. Christen, A. Dadgar, A. Krost, “Dislocation annihilation by silicon delta-doping in GaN epitaxy on Si”, Appl. Phys. Lett. Vol. 81, No. 25, Page(s):4712-4714, (2002).
[32] T. Li, C. Simbrunner, M. Wegscheider, A. Navarro-Quezada, M. Quast,
K. Schmidegg, A. Bonanni, “GaN: delta-Mg grown by MOVPE: Structural properties and their effect on the electronic and optical behavior”, Journal of Crystal Growth Vol. 310, Page(s):13–21, (2008).
[33] M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping”, Appl. Phys. Lett., Vol. 82, No. 18, Page(s):3041-3043, (2003).
[34] An-bang Wang “Investigation of InGaN/GaN multiple-quantumwell blue light emitting diode with InGaN/GaN superlattice current spreading layer”, Page: 5, (2005).
[35] “Basics of III-nitride materials”, 南京大學物理系半導體系列講座, Page: 4, (2006).
[36] O. Aktas, Z. F. Fan, S. N. Mohammed, A. E. Botchkarev, and H. Morkoc¸ “High temperature characteristics of AlGaN/GaN modulation doped field-effect transistors ”, Appl. Phys. Lett. Vol. 69, No. 25, Page(s):3872-3874, (1996).
[37] M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors”, J.Appl. Phys. Vol. 79, No. 10, Page(s):7433-7473, (1996).
[38] M. Asif Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, “High electron mobility transistor based on a GaN-AlxGa1-xN heterojunction”, Appl. Phys. Lett. Vol. 63, No. 9, Page(s):1214-1215, (1993).
[39] J. M. Redwing, M. A. Tischler, J. S. Flynn, S. Elhamri, M. Ahoujja, R. S.
Newrock, and W. C. Mitchel, “Two-dimensional electron gas properties of AlGaN/GaN heterostructures grown on 6H–SiC and sapphire substrates”, Appl. Phys. Lett. Vol. 69, No. 7, Page(s):963-965, (1996).
[40] E. T. Yu, G. J. Sullivan, P. M. Asbeck, C. D. Wang, D. Qiao, and S. S.
Lau, “Measurement of piezoelectrically induced charge in GaN/AlGaN heterostructure field-effect transistors”, Appl. Phys. Lett. Vol. 71, No. 19, Page(s):2794-2796, (1997).
[41] L. Hsu and W. Walukiewicz, “Effects of piezoelectric field on defect formation, charge transfer, and electron transport at GaN/AlxGa1 – xN interfaces”, Appl. Phys. Lett. Vol. 73, No. 3, Page(s):339-341, (1998).
[42] R. Oberhuber, G. Zandler, and P. Vogl, “Mobility of two-dimensional electrons in AlGaN/GaN modulation-doped field-effect transistors”, Appl. Phys. Lett. Vol. 73, No. 6, Page(s):818-820, (1998).
[43] S. R. Lee, D. D. Koleske, K. C. Cross, J. A. Floro, and K. E. Waldrip, A. T. Wise and S. Mahajan, “In situmeasurements of the critical thickness for strain relaxation in AlGaN/GaN heterostructures”, Appl. Phys. Lett., Vol. 85, No. 25, Page(s):6164-6166, (2004).
[44] Peter Kozodoy, Monica Hansen, Steven P. DenBaars, and Umesh K. Mishra, “Enhanced Mg doping efficiency in Al0.2Ga0.8N/GaN superlattices”, Appl. Phys. Lett. Vol. 74, No. 24, Page(s):3681-3683, (1999).
[45] B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, Prentice Hall, Page: 93, (2001).
[46] H. Hung, K. T. Lam, S. J. Chang, C. H. Chen, H. Kuan, and Y. X. Sune, “InGaN/GaN Multiple-Quantum-Well LEDs with Si-Doped Barriers”, Journal of The Electrochemical Society, Vol. 155, No. 6, Page(s):H455-H458, (2008).
[47] Peter Kozodoy, Yulia P. Smorchkova, Monica Hansen, Huili Xing, Steven P. DenBaars, and Umesh K. Mishra, A. W. Saxler, R. Perrin, and W. C. Mitchel, “Polarization-enhanced Mg doping of AlGaN/GaN superlattices”, Appl. Phys. Lett., Vol. 75, No. 16, Page(s):2444-2446, (1999).
[48] H. S. Kim, S. J. Park, H. S. Hwang, and N. M. Park, “Lateral current transport path, a model for GaN-based light-emitting diodes: Applications to practical device designs”, Appl. Phys. Lett. Vol. 81, No. 7, Page(s):1326-1328, (2002).
[49] H. Kim, S. J. Park and H. Hwang, “Effects of Current Spreading on the Performance of GaN-Based Light-Emitting Diodes”, IEEE Trans. Electron. Devices, Vol. 48, Page(s):1065-1069, (2001).
[50] S. J. Chang et al. “Highly reliable nitride-based LEDs with SPS+ITO upper contacts”, IEEE J. Quantum Electron. Vol. 39, Page(s):1439-1443, (2003).
[51] C. H. Chen, S. J. Chang, and Y. K. Su, J. Vac. Sci. Technol. A 22, 1020 (2004).
[52] H. X. Wang, N. Jiang, H. Hiraki, K. Nishimura, H. Sasaoka, A. Hiraki, and S. Sakai, J. Cryst. Growth 270, 57 (2004).
[53] Chin-Hsiang Chen, “InGaN/GaN blue light emitting diodes with modulation-doped AlGaN/GaN heterostructure layers”, J. Vac. Sci. Technol. A, Vol.24, No. 4, Page(s):1001-1004, (2006).
[54] Cheng-Liang Wang, Jyh-Rong Gong, Member, IEEE, Ming-Fa Yeh, Bor-Jen Wu, Wei-Tsai Liao, Tai-Yuan Lin, and Chung-Kwei Lin, “Improvement in the Characteristics of GaN-Based Light-Emitting Diodes by Inserting AlGaN–GaN Short-Period Superlattices in GaN Underlayers”, IEEE PHOTONICS TECHNOLOGY LETTERS, Vol. 18, No. 14, Page(s): 1497-1499, (2006).
[55] J. A. Majewski, G. Zandler, and P. Vogl, J. Phys. Condens. Matter 14, 3511 (2002).
[56] D. H. Youn, J. H. Lee, V. Kumar, K. S. Lee, J. H. Lee, and I. Adesida, “The effects of isoelectronic Al doping and process optimization for the fabrication of high-power AlGaN-GaN HEMTs”, IEEE Trans. Electron Devices, Vol. 51, Page(s):785-789, (2004).
[57] T.-H. Yu and K. F. Brennan, “Theoretical Study of a GaN–AlGaN High
Electron Mobility Transistor Including a Nonlinear Polarization Model”, IEEE Trans. Electron Devices, Vol. 50, Page(s):315-323, (2003).
[58] S. Arulkumaran, T. Egawa, H. Ishikawa, and T. Jimbo, “Comparative study of drain-current collapse in AlGaN/GaN high-electron-mobility transistors on sapphire and semi-insulating SiC”, Appl. Phys. Lett. Vol. 81, No.16, Page(s):3073-3075, (2002).
[59] M. Z. Kauser,a) A. Osinsky,b) A. M. Dabiran, and P. P. Chow, “Enhanced vertical transport in p-type AlGaN/GaN superlattices”, Appl. Phys. Lett., Vol. 85, No. 22, Page(s):5275-5277, (2004).
[60] T. C. Wen, S. J. Chang, C. T. Lee, W. C. Lai, and J. K. Sheu, “Nitride-Based LEDs With Modulation-Doped Al0.12Ga0.88N–GaN Superlattice Structures”, IEEE TRANSACTIONS ON ELECTRON DEVICES, Vol. 51, No. 10, Page(s):1743-1746, (2004).
[61] Hsin-Chuan WANG, Yan-Kuin SU, Chun-Liang LIN, Wen-Bin CHEN and Shi-Ming CHEN, “InGaN/GaN Light Emitting Diodes with a Lateral Current Blocking Structure”, Jpn. J. Appl. Phys., Vol. 43, No. 4B, Page(s):2006-2007, (2004).
[62] Peter Kozodoy, Monica Hansen, Steven P. DenBaars, and Umesh K. Mishra, “Enhanced Mg doping efficiency in Al0.2Ga0.8N/GaN superlattices”, Appl. Phys. Lett., Vol. 74, No. 24, Page(s):3681-3683, (1999).
[63] M. Razeghi and M. Henini, “Optoelectronic Devices: III-Nitrides”, Elsevier Science, Page:229, (2005).