| 研究生: |
賴豊文 Lai, Li-Wen |
|---|---|
| 論文名稱: |
以射頻濺鍍法成長氧化鋅薄膜及其摻雜之光電特性研究 Investigation of optical and electrical properties of pure and doped zinc oxide films by RF sputtering method |
| 指導教授: |
李清庭
Lee, Ching-Ting |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 氧化鋅 、濺鍍系統 |
| 外文關鍵詞: | ZnO, sputter |
| 相關次數: | 點閱:62 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中首先利用射頻磁控濺鍍系統於不同工作壓力下成長氧化鋅薄膜於矽基板上,隨著工作壓力增加其電阻率有隨之下降趨勢,且在不進行熱處理條件下其最低電阻率可達4.3×10-3 Ω-cm,藉由光學穿透率量測,當波長大於430nm時其穿透率達90%以上,且在波長380nm時穿透率可達80%。在高工作壓力下成長可以降低其非輻射復合速率進而增進其載子生命週期,其非輻射復合速率降低之原因是由於氧缺陷減少所致。此外,隨著工作壓力之增加其薄膜吸收係數亦隨之降低且光學能隙有增大之趨勢。
此外,利用此共濺鍍系統可在室溫下成長出具矽奈米顆粒之氧化鋅薄膜。在共濺鍍過程中調變矽靶之射頻功率,可成長出不同結晶結構矽摻雜氧化鋅薄膜。此部分之研究利用高解析穿透式電子顯微鏡、X光繞射儀及傅立葉轉換紅外線光譜儀分析矽奈米顆粒於氧化鋅基材內之結晶狀態及鍵結型態,最後並利用光激發光譜分析比較方式,可證明出矽奈米顆粒之量子侷限效應。
本研究利用此射頻系統共濺鍍成長氮化鋁摻雜氧化鋅薄膜於藍寶石基板上,薄膜成長過程中基板不升溫且調變氮氣對氬氣之比例,為了分析出不同氮氣比例下對於氮化鋁摻雜氧化鋅薄膜之影響,將針對結晶結構及鍵結型態做較深入之分析。在適當比例之氮氣環境下成長氮化鋁摻雜氧化鋅薄膜,並進行450oC熱退火活化處理,可促進其鋅原子與氮原子鍵結並進而製作出P型氧化鋅薄膜。根據低溫光激發光譜之量測可計算出電洞位階之束縛能約0.16 eV,且由於氮原子填補了氧缺陷位置,因此增進了氮化鋁摻雜氧化鋅薄膜內載子生命週期。
最後,利用氣相冷凝系統及共濺鍍系統成長高品質本質氧化鋅、N型氧化鋅及P型氧化鋅薄膜於藍寶石基板上,製作出氧化鋅同質接面發光二極體,其電流-電壓特性曲線呈現出一整流特性,且在電激發光光譜量測下,其發光中心波段位在387nm左右,此現象是因為輻射複合發光皆位在高品質本質氧化鋅區域內所致。
In this thesis, zinc oxide (ZnO) thin films were deposited on Si substrates using various working pressures by magnetron sputter. The resistivity of the deposited ZnO films decreases with working pressure and the resistivity of 4.3x10-3Ω-cm can be obtained without post annealing. According to the optical transmittance measurements, the optical transmittance above 90% in the wavelength longer than 430nm and about 80% in the wavelength of 380nm can be found. Using time-resolved photoluminescence measurement, the carrier lifetime increases with working pressure due to the reduction of nonradiative recombination rate. The reduction of nonradiative recombination rate is originated from the decrease of oxygen vacancies in the ZnO films deposited at a higher working pressure. Besides, by increasing the working pressure, the absorption coefficient was decreased and the associated optical energy gap of ZnO thin films was increased.
Moreover, a cosputtering system was used to deposit silicon nanoclusters embedded in zinc oxide matrix (Si:ZnO) at low temperature without post-annealing. By adjusting the radio frequency power of the Si target during co-sputtering, Si:ZnO films with various crystallographic structures can be obtained. Silicon nanoclusters embedded in the zinc oxide matrix were examined using a high resolution transmission electron microscope (HRTEM), X-ray diffractometer (XRD) and Fourier transformation infrared (FTIR) spectrometry. By comparing with photoluminescence (PL) spectra, we can clearly identify quantum confinement effect of silicon nanoclusters embedded in the ZnO matrix.
For the fabrication of p-type ZnO, AlN codoped ZnO films were deposited on sapphire substrates at low temperature using a co-sputter system under various N2/(N2+Ar) flow ratios. To investigate the nitrogen function, the ratio of nitrogen ambient was varied during co-sputtering. AlN codoped ZnO films with various crystallographic structures and bonding configurations were measured. With an adequate nitrogen atmosphere deposition condition and post-annealing temperature at 450oC, the p-type conductive behaviors of AlN codoped ZnO films were achieved due to the formation of Zn-N bonds. According to the low temperature photoluminescence (LT-PL) spectra, the binding energy (EA) of 0.16 eV for N acceptors can be calculated. Using time-resolved photoluminescence measurement, the carrier lifetime in AlN codoped ZnO films increases due to the reduction of oxygen vacancies caused by the occupation of adequate nitrogen atom.
Finally, high quality i-ZnO, n-ZnO:In and p-type ZnO thin films were grown on sapphire substrates using vapor cooling condensation method and cosputter technique. Nonlinear rectifying IV characteristic was measured. The ultraviolet emission peak at 387 nm observed in the p-i-n homostructed-light-emitting diode was attributed to the radiative recombination of near-band edge in the i-ZnO layer.
chapter 1
[1] Q. X. Yu, B. Xu, Q. H. Wu, Y. Liao, G. Z. Wang, R. C. Fang, H. Y. Lee, and C. T. Lee, “Optical properties of ZnO/GaN heterostructure and its near-ultraviolet light-emitting diode”, Appl. Phys. Lett., vol. 23, 4713 (2003).
[2] C. T. Lee, U. Z. Yang, C. S. Lee, and P. S. Chen, “White light emission of monolithic carbon-implanted InGaN–GaN light-emitting diodes”, IEEE Photon. Technol. Lett., vol. 18, 2029 (2006).
[3] H. K. Kim, K. S. Lee, and J. H. Kwon, “Transparent indium zinc oxide top cathode prepared by plasma damage-free sputtering for top-emitting organic light-emitting diodes”, Appl. Phys. Lett., vol. 88, 012103 (2006).
[4] S. H. Park, S. H. Kim, and S. W. Han, ”Growth of homoepitaxial ZnO film on ZnO nanorods and light emitting diode applications”, Nanotechnol., vol. 18, 055608 (2007).
[5] Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization”, J. Appl. Phys., vol. 84, 3912 (1998).
[6] C. T. Lee, Q. X. Yu, B. T. Tang, H. Y. Lee, and F. T. Hwang, “Investigation of indium tin oxide/zinc oxide multilayer ohmic contacts to n-type GaN isotype conjunction”, Appl. Phys. Lett., vol. 78, 3412 (2001).
[7] C. Y. Lo, C. L. Hsu, Q. X. Yu, H. Y. Lee, and C. T. Lee, ”Investigation of transparent and conductive undoped Zn2In2O5-x films deposited on n-type GaN layers”, J. Appl. Phys., vol. 92, 274 (2002).
[8] K. Ramamoorthy, K. Kumar, R. Chandramohan, K. Sankaranarayanan, R. Saravanan, I. V. Kityk, and P. Ramasamy, ”High optical quality IZO (In2Zn2O5) thin films by PLD–A novel development for III–V opto-electronic devices”, Opt. Commun., vol. 262, 91 (2006).
[9] H. K. Kim, K. S. Lee, and H. A. Kang, “Characteristics of indium zinc oxide top cathode layers grown by box cathode sputtering for top-emitting organic light-emitting diodes”, J. Electrochem. Soc., vol. 153, H29 (2006).
[10] R. Hong, H. Qi, J. Huang, H. He, Z. Fan, and J. Shao, “Influence of oxygen partial pressure on the structure and photoluminescence of direct current reactive magnetron sputtering ZnO thin films”, Thin Solid Films, vol. 473, 58 (2005).
[11] X. H. Li, A. P. Huang, M. K. Zhu, S. L. Xu, J. Chen, H. Wang, B. Wang, and H. Yan, “Influence of substrate temperature on the orientation and optical properties of sputtered ZnO films”, Mater. Lett., vol. 57, 4655 (2003).
[12] J. D. Ye, S. L. Gu, S. M. Zhu, S. M. Liu, Y. D. Zheng, R. Zhang, and Y. Shi, “Fermi-level band filling and band-gap renormalization in Ga-doped ZnO”, Appl. Phys Lett., vol. 86, 192111 (2005).
[13] S. H. Jeong, J. W. Lee, S. B. Lee, and J. H. Boo, “Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their structural, electrical and optical properties”, Thin Solid Films, vol. 435, 78 (2003).
[14] A. Irrera, F. Iacona, I. Crupi, C. D. Presti, G. Franzo, C. Bongiorno, D. Sanfilippo, G. D. Stefano, A. Piana, P. G. Fallica, A. Canino, and F. Priolo, “Electroluminescence and transport properties in amorphous silicon nanostructures”, Nanotechnol., vol. 17, 1428 (2006).
[15] N. M. Park, T. S. Kim, and S. J. Park, “Band gap engineering of amorphous silicon quantum dots for light-emitting diodes”, Appl. Phys. Lett., vol. 78, 2575 (2001).
[16] T. C. Tsai, L. Z. Yu, and C. T. Lee, “Electroluminescence emission of crystalline silicon nanoclusters grown at a low temperature”, Nanotechnol., vol. 18, 275707 (2007).
[17] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor”, Science, vol. 300, 1269 (2003).
[18] K. Koike, I. Nakashima, K. Hashimoto, S. Sasa, M. Inoue, and M. Yano, “Characteristics of a Zn0.7Mg0.3O/ZnO heterostructure field-effect transistor grown on sapphire substrate by molecular-beam epitaxy”, Appl. Phys. Lett., vol. 87, 112106 (2001).
[19] Q. X. Yu, B. Xu, Q. H. Wu, Y. Liao, G. Z. Wang, R. C. Fang, H. Y. Lee, and C. T. Lee, “Optical properties of ZnO/GaN heterostructure and its near-ultraviolet light-emitting diode”, Appl. Phys. Lett., vol. 83, 4713 (2003).
[20] D. C. Look , B. Claflin , Y. I. Alivov, and S. J. Park, “The future of ZnO light emitters”, Phys. Status Solidi A, vol. 201, 2203 (2004).
[21] R. W. Chuang, R. X. Wu, L. W. Lai, and C. T. Lee, “ZnO-on-GaN heterojunction light-emitting diode grown by vapor cooling condensation technique”, Appl. Phys. Lett., vol. 91, 231113 (2007).
[22] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu, “Growth of p-type zinc oxide films by chemical vapor deposition”, Jpn. J. Appl. Phys., vol. 36, L1453 (1997).
[23] V. Vaithianathan, B. T. Lee, and S. S. Kim, “Pulsed-laser-deposited p-type ZnO films with phosphorus doping”, J. Appl. Phys., vol 98, 043519 (2005).
[24] D. C. Look, G. M. Renlund, R. H. Burgener II, and J. R. Sizelove, “As-doped p-type ZnO produced by an evaporation/sputtering process”, Appl. Phys. Lett., vol. 85, 5269 (2004).
[25] L. J. Mandalapu, F. X. Xiu, Z. Yang, D. T. Zhao, and J. L. Liu, “P-type behavior from Sb-doped ZnO heterojunction photodiodes”, Appl. Phys. Lett., vol. 88, 112108 (2006).
[26] D. S. Liu, C. S. Sheu, and C. T. Lee, “Aluminum-nitride codoped zinc oxide films prepared using a radio-frequency magnetron cosputtering system”, J. Appl. Phys., vol. 102, 033516 (2007).
[27] L. L. Chen, Z. Z. Ye, J. G. Lu, and P. K. Chu, “Control and improvement of p-type conductivity in indium and nitrogen codoped ZnO thin film”, Appl. Phys. Lett., vol. 89, 252113 (2006).
[28] M. Kumar, T. H. Kim, S. S. Kim, and B. T. Lee, “Growth of epitaxial p-type ZnO thin films by codoping of Ga and N”, Appl. Phys. Lett., vol. 89, 112103 (2006).
[29] Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev, and D. M. Bagnall, “Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates”, Appl. Phys. Lett., vol. 83, 4719 (2003).
[30] D. K. Hwang, S. H. Kang, J. H. Lim, E. J, Yang. J. Y. Oh, J. H. Yang, and S. J. Park, “p-ZnO/n-GaN heterostructure ZnO light-emitting diodes”, Appl. Phys. Lett., vol. 86, 222101 (2005).
[31] Y. I. Alivov, U. Ozgur, S. Dogan, C. liu, Y. Moon, X. Gu, V. Avrutinn, Y. Fu, and H. Morkoc, “Forward-current electroluminescence from GaN/ZnO double heterostructure diode”, Solid-State Electron., vol. 49, 1693 (2005).
[32] D. C. Oh, T. Suzuki, J. J. Kim, H. Makino, T. Hanada, T. Yo, and H. J. Ko, “Capacitance-voltage characteristics of ZnO/GaN heterostructures”, Appl. Phys. Lett., vol. 87, 162104 (2005)
chapter 2
[1] D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, “ZnO: growth, doping & processing”, materialstoday, vol. 7, 34 (2004).
[2] J. Wang, G. Du, Y. Zhang, B. Zhao, X. Yang, and D. Liu, “Luminescence properties of ZnO films annealed in growth ambient and oxygen”, J. Crystal Growth, vol. 263, 269 (2004).
[3] H. S. Kang, J. S. Kang, S. S. Pang, E. S. Shim, and S. Y. Lee, “Variation of light emitting properties of ZnO thin films depending on post-annealing temperature”, Mater. Sci. Eng. B, vol. 102, 313 (2003).
[4] B. Lin, Z. Fu, Y. Jia, and G. Liao, “Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions”, J. Electrochem. Soc., vol. 148, G110 (2001).
[5] B. Pivac, K. Furic, and D. Desnica, “Raman line profile in polycrystalline silicon”, J. Appl. Phys., vol. 86, 4383 (1999).
[6] S. Y. Yoon, S. J. Park, K. H. Kim, and J. Jang, “Structural and electrical properties of polycrystalline silicon produced by low-temperature Ni silicide mediated crystallization of the amorphous phase”, J. Appl. Phys., vol. 87, 609 (2000).
[7] E. Ozensoy, C. H. F. Peden, and J. Szanyi, “Low temperature H2O and NO2 coadsorption on -Al2O3/NiAl(100) ultrathin films,” J. Phys. Chem. B., vol. 110, 8025 (2006).
[8] Z. J. Han, B. K. Tay, and P. C. T. Ha, “XPS studies on aluminum ions modified polyimide with the PIII technique,” J. Appl. Phys., vol. 101, 053301 (2007).
[9] T. W. Kim, C. H. Cho, B. H. Kim, and S. J. Park, “Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3”, Appl. Phys. Lett., vol. 88, 123102 (2006).
[10] T. Y. Kim, N. M. Park, K. H. Kim, G. Y. Sung, Y. W. Ok, T. Y. Seong, and C. J. Choi, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films”, Appl. Phys. Lett., vol. 85, 5355 (2004).
[11] G. Ledoux, J. Gong, and F. Huiskena, O. Guillois, and C. Reynaud “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement”, Appl. Phys. Lett., vol. 80, 4834 (2002).
[12] X. W. Dua, L. Y. Liu, P. Yao, and L. Cui, “Intrinsic ultraviolet light-emission from Si nanocrystals prepared by reactive sputtering”, J. Appl. Phys., vol. 100, 076102 (2006)
chapter 3
[1] R. W. Chuang, R. X. Wu, L. W. Lai, and C. T. Lee, “ZnO-on-GaN heterojunction light-emitting diode grown by vapor cooling condensation technique”, Appl. Phys. Lett., vol. 91, 231113 (2007).
[2] Y. R. Ryu, T. S. Lee, J. H. Leem, and H. W. White, ”Fabrication of homostructural ZnO p–n junctions and ohmic contacts to arsenic-doped p-type ZnO”, Appl. Phys. Lett., vol. 83, 4032 (2003).
[3] Y. F. Lu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, and B. H. Zhao, ” Ni/Au ohmic contacts to p-Type N-Doped ZnO”, Electrochem. Solid State Lett., vol. 11, H185 (2008).
[4] H. K. Kim, S. H. Han, T. Y. Seong, and W. K. Cho, ”Electrical and structural properties of Ti/Au ohmic contacts to n-ZnO”, J. Electrochem. Soc., vol. 148, G114 (2001).
chapter 4
[1] A. Palmero, H. Rudolph, and F. H. P. M. Habraken, ” Gas heating in plasma-assisted sputter deposition”, Appl. Phys. Lett., vol. 87, 071501 (2005).
[2] H. Dieker and M. Wuttig, “Influence of deposition parameters on the properties of sputtered Ge2Sb2Te5 films”, Thin Solid Films, vol. 478, 248 (2005).
[3] T. Koida, S. F. Chichibu, A. Uedono, A. Tsukazaki, M. Kawasaki, T. Sota, Y. Segawa, and H. Koinuma, “Correlation between the photo- luminescence lifetime and defect density in bulk and epitaxial ZnO”, Appl. Phys. Lett., vol. 82, 532 (2003).
[4] K. C. Park, D. Y. Ma, and K. H. Kim, ”The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering“, Thin Solid Films, vol. 305, 201(1997).
[5] H. R. Fallah, M. Ghasemi, A. Hassanzadeh, and H. Steki, “The effect of annealing on structural, electrical and optical properties of nanostructured ITO films prepared by e-beam evaporation”, Mater. Res. Bull., vol. 42, 487 (2007).
[6] E. Burstein, “Anomalous optical absorption limit in InSb”, Phys. Rev., vol. 93, 632 (1954).
[7] S. Tuzemen, S. Dogan, A. Ates, M. Yildirim, G. Xiong, J. Wilkinson, and R. T. Williams, “Convertibility of conductivity type in reactively sputtered ZnO thin films”, Phys. Stat. Sol., vol. 195, 165 (2003).
[8] G. Schoen, “ESCA studies of Ag, Ag2O and AgO”, Acta Chem. Scand., vol. 27, 2623 (1973).
[9] M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, and L. S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films”, Appl. Surf. Sci., vol. 158, 134 (2000).
[10] S. Major, S. Kumar, M. Bhatnagar, and K. L. Chopra, “Effect of hydrogen plasma treatment on transparent conducting oxides”, Appl. Phys.Lett., vol. 49, 394 (1986).
[11] M. N. Islam, T. B. Ghosh, K. L. Chopra, and H. N. Acharya, “XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films”, Thin Solid Films, vol. 280, 20 (1996).
[12] V. I. Nefedov, M. N. Firsov, and I. S. Shaplygin, “Electronic-structures of MRHO2, MRH2O4, RHMO4 and RH2MO6 on the basis of X-ray spectroscopy and ESCA data”, J. Elec. Spectrosc. Relat. Phenom., vol. 26, 65 (1982).
[13] J. C. C. Fan and J. B. Goodenough, “X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films”, J. Appl. Phys., vol. 48, 3524 (1977).
[14] T. Minami, H. Sato, H. Nanto, and S. Takata, “High conductive and transparent silicon doped zinc oxide thin films prepared by RF magnetron sputtering”, Jpn. J. Appl. Phys., vol. 25, L776 (1986).
[15] B. H. Choi and H. B. Im, “Optical and electrical properties of Ga2O3-doped ZnO films prepared by r.f. sputtering”, Thin solid films, vol. 193, 712 (1990).
[16] M. Nagamori, J. A. Boivin, and A. Claveau, “ Gibbs free energies of formation of amorphous Si2O3, SiO and Si2O”, J. Non-Crystalline Solids, vol. 189, 270 (1995).
[17] K. K. Kim, H. Tampo, J. O. Song, T. Y. Seong, S. J. Park, J. M. Lee, S. W. Kim, S. Fujita, and S. Niki, “Effect of rapid thermal annealing on Al doped n-ZnO films grown by RF-magnetron sputtering”, Jpn. J. Appl. Phys., vol. 44, 4776 (2005).
[18] F. Xiua, Z. Yanga, D. Zhaoa, J. Liua, K. Alimb, Balandinb, and C. Haddonc, “ZnO growth on Si with low-temperature ZnO buffer layers by ECR-assisted MBE”, J. Crystal Growth, vol. 286, 61 (2006).
[19] S. Zhang, W. Zhang, and J. Yuan, “The preparation of photoluminescent Si nanocrystal-SiOX films by reactive evaporation”, Thin Solid Films, vol. 326, 92 (1998).
[20] S. Vijayalakshmia, Z. Iqbalb, M. A. Georgec, J. Federicid, and H. Grebela, “Characterization of laser ablated silicon thin films”, Thin Solid Films, vol. 339, 102 (1999).
[21] Y. Honda, S. Shida, K. Goda, and T. Nagata, “Structure and optical properties of light-emitting Si films fabricated by neutral cluster deposition and subsequent high-temperature annealing”, J. Non-Crystalline Solids, vol. 352, 2109 (2006).
[22] Z. Wang, H. Zhang, L. Zhang, J. Yuan S. Yan, and C. Wang, “Low-temperature synthesis of ZnO nanoparticles by solid-state pyrolytic reaction”, Nanotechnol., vol. 14, 11 (2003).
[23] V. V. S. Kumar, F. Singh, A. Kumar, and D. K. Avasthi, “Growth of ZnO nanocrystals in silica by rf co-sputter deposition and post-annealing”, Nucl. Instrum. Methods, vol. 244, 91 (2006).
[24] C. Tsai, K. H. Li, D. S. Kinosky, R. Z. Qian, T. C. Hsu, J. T. Irby, S. K. Banerjee, A. F. Tasch, and J. C. Campbell, “Correlation between silicon hydride species and the photoluminescence intensity of porous silicon”, Appl. Phys. Lett., vol. 60, 1700 (1992).
[25] G. G. Siu, X. L. Wu, Y. Gu, and X. M. Bao, “Enhanced and stable photoluminescence from partially oxidized porous Si coated with Si thin films”, J. Appl. Phys., vol. 88, 3781 (2000).
[26] L. Dan and X. L. Wua, “Optical emission from SiOx nanoparticles irradiated by ultraviolet ozone”, J. Appl. Phys., vol. 94, 7288 (2003).
[27] Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, and B. K. Tay, “Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air”, J. Appl. Phys., vol. 94, 354 (2003).
[28] J. L. Zhao, X. W. Sun, S. T. Tan, G. Q. Lo, D. L. Kwong, and Z. H. Cen, “Realization of n-Zn1−xMgxO/i-ZnO/SiOx/n+-Si heterostructured n-i-n light-emitting diodes by low-cost ultrasonic spray pyrolysis”, Appl. Phys. Lett., vol. 91, 263501 (2007).
[29] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors”, Appl. Phys. Lett., vol. 68, 403 (1996).
[30] S. A. Studenikin, N. Golego, and M. Cocivera, “Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis”, J. Appl. Phys., vol. 84, 2287 (1998).
[31] X. X. Wang, J. G. Zhang, L. Ding, B. W. Cheng, W. K. Ge, J. Z. Yu, and Q. M. Wang, “Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix”, Phys. Rev. B, vol. 72, 195313 (2005).
[32] T. W. Kim, C. H. Cho, B. H. Kim, and S. J. Park, “Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3”, Appl. Phys. Lett., vol. 88, 123102 (2006).
[33] T. Y. Kim, N. M. Park, K. H. Kim, G. Y. Sung, Y. W. Ok, T. Y. Seong, and C. J. Choi, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films”, Appl. Phys. Lett., vol. 85, 5355 (2004).
[34] N. M. Park, T. S. Kim, and S. J. Park, “Band gap engineering of amorphous silicon quantum dots for light-emitting diodes”, Appl. Phys. Lett., vol. 78, 2575 (2001).
[35] R. Konishi, K. Noda, and H. Sasakura, “Heat treatment effect of ZnO:Al thin films prepared by facing-target-type sputtering method”, Jpn. J. Appl. Phys., vol. 30, 567 (1991).
[36] T. Yamamoto and H. K. Yoshida, “Solution using a codoping method to unipolarity for the fabrication of p-type ZnO”, Jpn. J. Appl. Phys. Part 2, vol. 38, L166 (1999).
[37] C. L. Perkins, S. H. Lee, X. Li, S. E. Asher, and T. J. Coutts, “Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy”, J. Appl. Phys., vol. 97, 034907 (2005).
[38] C. H. Park, S. B. Zhang, and S. H. Wei, “Origin of p-type doping difficulty in ZnO: the impurity perspective”, Phys. Rev. B, vol. 66, 073202 (2002).
[39] B. Yao, D. Z. Shen, Z. Z. Zhang, X. H. Wang, Z. P. Wei, B. H. Li, Y. M. Lv, X. W. Fan, L. X. Guan, G. Z. Xing, C. X. Cong, and Y. P. Xie, “ Effects of nitrogen doping and illumination on lattice constants and conductivity behavior of zinc oxide grown by magnetron sputtering”, J. Appl. Phys., vol. 99, 123510 (2006).
[40] E. C. Lee, Y. S. Kim, Y. G. Jin, and K. J. Chang, “Compensation mechanism for N acceptors in ZnO”, Phys. Rev. B, vol. 64, 085120 (2001).
[41] Y. Zhang, D. J. Chen, and C. T. Lee, “Free exciton emission and dephasing in individual ZnO nanowires”, Appl. Phys. Lett., vol. 91, 161911 (2007).
[42] A. N. Georgobiani, A. N. Gruzintsev, V. T. Volkov, M. O. Vorobiev, V. I. Demin, and V. A. Dravin, “P-type ZnO:N obtained by ion implantation of nitrogen with post-implantation annealing in oxygen radicals”, Nucl. Instrum. Methods Phys. Res. A, vol. 514, 117 (2003).
[43] Y. R. Ryu, T. S. Lee, and H. W. White, “Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition”, Appl. Phys. Lett., vol. 83, 87 (2003).
[44] F. X. Xiu, Z. Yang, L. J. Mandalapu, and J. L. Liu, “P-type ZnO films with solid-source phosphorus doping by molecular-beam epitaxy”, Appl. Phys. Lett., vol. 88, 052106 (2006).
[45] J. G. Lu, L. P. Zhu, Z. Z. Ye, Y. J. Zeng, F. Zhuge, B. H. Zhao, and D. W. Ma, “Improved N–Al codoped p-type ZnO thin films by introduction of a homo-buffer layer”, J. Cryst. Growth, vol. 274, 425 (2005).
[46] Y. G. Wang, S. P. Lau, X. H. Zhang, H. W. Lee, H. H. Hng, and B. K. Tay, “Observations of nitrogen-related photoluminescence bands from nitrogen-doped ZnO films”, J. Cryst. Growth, vol. 252, 265 (2003).
[47] Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, and B. K. Tay, “Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air”, J. Appl. Phys., vol. 94, 354 (2003).
[48] S. A. Studenikin, N. Golego, and M. Cocivera, “Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis”, J. Appl. Phys., vol. 84, 2287 (1998).
[49] X. H. Pan, Z. Z. Ye, J. Y. Huang, Y. J. Zeng, H. P. He, X. Q. Gu, L. P. Zhu, and B. H. Zhao, “P-type behavior in Li-doped Zn0.9Mg0.1O thin films”, J. Cryst. Growth, vol. 310, 1029 (2008).
[50] F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, and J. L. Liu, “Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy”, Appl. Phys. Lett., vol. 87, 252102 (2005).
[51] P. S. Chen, T. H. Lee, L. W. Lai, and C. T. Lee, “Schottky mechanism for Ni/Au contact with chlorine-treated n-type GaN layer”, J. Appl. Phys., vol. 101, 024507 (2007).
[52] L. W. Lai and C. T. Lee, “Investigation of optical and electrical properties of ZnO thin films”, Mater. Chem. Phys., vol. 110, 393 (2008).
[53] T. Koida, S. F. Chichibu, A. Uedono, A. Tsukazaki, M. Kawasaki, T. Sota, Y. Segawa, and H. Koinuma, “Correlation between the photo -luminescence lifetime and defect density in bulk and epitaxial ZnO”, Appl. Phys. Lett., vol. 82, 532 (2003).
[54] J. G. Lu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, L. Wang, J. Yuan, B. H. Zhao, and Q. L. Liang, “Structural, optical, and electrical properties of (Zn,Al)O films over a wide range of compositions”, J. Appl. Phys., vol. 100, 073714 (2006).
[55] E. Burstein, “Anomalous optical absorption limit in InSb”, Phys. Rev., vol. 93, 632 (1954).
[56] G. Yuan, Z. Ye, L. Zhu, Y. Zeng, J. Huang, Q. Qian, and J. Lu, “P-type conduction in Al–N co-doped ZnO films”, Mater. Lett., vol. 58, 3741 (2004)