| 研究生: |
楊富欽 Yang, Fu-Chin |
|---|---|
| 論文名稱: |
具透明導電膜之非晶矽與微晶矽疊層太陽能電池之研究 Tandem solar cell with TCO structure of amorphous and microcrystalline silicon solar cell |
| 指導教授: |
李清庭
Lee, Ching-Ting |
| 共同指導教授: |
賴韋志
Lai, Wei-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 矽薄膜 、太陽能電池 |
| 外文關鍵詞: | silicon, solar cell |
| 相關次數: | 點閱:76 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究所探討的主題是在低溫環境下利用雷射輔助電漿增強式化學氣相沉積系統進行高品質非晶矽及微晶矽薄膜的沉積,利用矽薄膜反應氣體矽甲烷對波長10.6微米的二氧化碳雷射具有相當高吸收率,在薄膜沉積過程中導入二氧化碳雷射輔助矽薄膜沉積,進而在低溫下製作P型、I型與N型微晶矽薄膜,進一步討論在不同雷射輔助條件下對薄膜緻密度、光電特性以及結晶品質上的差異。在應用方面,因為非晶矽相對於單晶矽有相當高的吸收係數,打破傳統結晶矽的限制,特別適合太陽能元件的開發,但在長時間照光下,薄膜品質會有劣化現象,因此發展高品質微晶矽薄膜太陽能電池變成首要目標,本研究利用雷射輔助矽薄膜形成太陽能電池,在未加入雷射輔助時太陽能電池元件效率為6.04%,雷射輔助太陽能電池元件效率提升至7.01%,最終將未加雷射輔助的非晶矽太陽能電池與雷射輔助太陽能電池串疊,效率可達7.13%,顯示雷射輔助有助於幫助提升太陽能電池轉換效率。
The topic of this research is silicon film deposited at low temperature based on Laser-assisted Plasma-Enhanced Chemical Vapor Deposition system (LAPECVD) to become amorphous and microcrystal silicon film. Because of specially high absorption of silane to CO2 laser, laser beam is guided into chamber during deposition of silicon film to form p-type, intrinsic and n-type silicon film at low temperature, and further investigate the porosity、optical and electrical property、quality of crystallization based on varying laser power assistance. As to application, amorphous silicon is very suitable to form solar cell because of ultra high absorption coefficient compared to single-crystal silicon. However, amorphous silicon would degrade at a longer term luminance. Therefore, the LAPECVD system could supply better quality of silicon thin film to overcome this weakness. This research fabricated solar cell under laser assistance, for efficiency of solar cell without laser assistance is 6.04%, 7.01% for laser assistant solar cell, and final efficiency is up to 7.13% for tandem solar cell. In conclusion, laser assistance technology is benefit for enhance efficiency of solar cell.
[1]Climate Change 2007:The Physics Science Basis, IPCC.
[2]H. F. Sterling and R. C. G. Swann, “Chemical vapor deposition promoted by r.f. discharge,” Solid-state Electron, vol. 8, pp. 653-654, 1965.
[3]D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett., vol. 31, pp. 292-294, 1977.
[4]P. C. Taylor, G. Ganguly and D. E. Carlson, “Direct role of hydrogen in the Staebler-Wronski effect in hydrogenated amorphous silicon,” Phys. Rev. Lett., vol. 89, pp. 015502.1-015502.4, 2002.
[5]Y. S. Tsuo and W. Juft, “Alternative deposition processes for hydrogenated amorphous silicon and related alloys,” Appl. Phys. Commun., vol. 10, pp. 71-141, 1990.
[6]M. Kupich, D. Grunsky, P. Kumar and B. SchrÖder, “Preparation of microcrystalline silicon nip solar cells and amorphous–microcrystalline nip-nip tandem solar cells entirely by hot-wire CVD,” Thin Solid Films, vol. 501, pp. 268-271, 2006.
[7]張勁燕, “半導體製程設備,” 五南出版社, 2000.
[8]P. Stradins, “Light-induced degradation in a-Si:H and its relation to defect creation,” Sol. Energy Mater. Solar Cells, vol. 78, pp. 349-367, 2003.
[9]莊達人, “VLSI 製造技術,” 高立圖書有限公司, 2003.
[10] J. M. Seo, M. C. Jeong and J. M. Myoung, “Effects of hydrogen on poly-and nano-crystallization of a-Si: H prepared by RF magnetron sputtering,” J. Cryst. Growth, vol. 295, pp. 119-123, 2006.
[11] S. Guha and J. Yang, Scott J. Jones, Y. Chan and D. L. Williamson, “Effect of microvoids on initial and light-degraded efficiencies of hydrogenated amorphous silicon alloy solar cells,” Appl. Phys. Lett., vol. 61, pp. 1444-1446, 1992.
[12] J. Meier, E. Vallat-Sauvain, S. Dubail, U. Kroll, J. Dubail, S. Golay, L. Feitknecht, P. Torres, S. Fay, D. Fischer and A. Shah, “Microcrystalline/micromorph silicon thin-film solar cells prepared by VHF-GD technique,” Sol. Energy Mater. Solar Cells, vol. 66, pp. 73-84, 2001.
[13] A. V. Shah, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz and U. Graf, “Material and solar cell research in microcrystalline silicon,” Sol. Energy Mater. Solar Cells, vol. 78, pp. 469-491, 2003.
[14] C. Rockstuhl, F. Lederer, K. Bittkau, T. Beckers and R. Carius, “The impact of intermediate reflectors on light absorption in tandem solar cells with randomly textured surfaces,” Appl. Phys. Lett., vol. 94, pp. 211101-1-211101-3, 2009.
校內:2021-01-01公開