| 研究生: |
簡偉哲 Chien, Wei-Che |
|---|---|
| 論文名稱: |
探討音樂家在判斷音程和諧程度時的大腦機制:從 EEG 到 fMRI Exploring Brain Mechanism of Judging Consonance of Intervals in Musicians: from EEG to fMRI |
| 指導教授: |
梁勝富
Liang, Sheng-Fu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 大腦可塑性 、和諧音程 、事件相關電位 、功能系磁振照影 、稀疏時間取樣 、額葉 、顳葉 、枕葉 、頂葉 、邊緣葉 、聽覺皮質 |
| 外文關鍵詞: | brain plasticity, consonance interval, event-related potentials, functional magnetic imaging, sparse sampling, frontal lobe, temporal lobe, occipital lobe, parietal, limbic lobe, auditory cortex |
| 相關次數: | 點閱:227 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
感知上的和諧程度為對聲音感知的愉悅程度,對於和諧程度的判斷被廣泛認為和大腦的一些區域如聽覺皮質等區域相關;大腦可塑性為大腦改變其結構與功能的能力,經驗與訓練則為其改變的一個主要因素。諧和音程是西方音樂調性理論普遍且重要的概念,過去研究發現音樂家對於和諧音程的處理是符合音程和諧度。本研究利用行為實驗、事件相關電位實驗以及功能性磁振照影來探討,並在功能性磁振照影與事件相關電位做交互探討。為了減少MRI產生的噪音影響,我們以稀疏時間取樣進行聽覺功能性磁振造影。從行為實驗結果發現,即便在MRI產生的噪音影響下,音樂在MRI裡面與外面皆維持80%以上的正確率且並無顯著差異。
在ERPs分析中出現N1、P2、N2的腦電位反應,N1由初級聽覺皮質區產生、P2是由次級聽覺皮質區產生、N2是由前扣帶皮質區(ACC)產生。針對和諧音程而言,結果顯示音樂家聽到和諧音程比不和諧音程能夠產生較強的P2振幅且有明顯差異;在fMRI分析上,我們發現對和諧音程與不和諧音程,額葉、顳葉、頂葉與枕葉均有反應且左腦較強。在左腦的額葉與邊緣葉,和諧音程的反應較不和諧音程強;在fMRI與ERPs的交互分析上,發現在左腦的額葉上,和諧音程的反應較不和諧音程強;實驗結果指出大腦對於和諧音程的反應會受到專業訓練的影響,音樂家可明確分辨和諧音程與不和諧音程且不受到MRI產生的噪音影響,音樂家的次級聽覺皮質區因受到長期音樂訓練而強化,而在判斷和諧或不和諧音程時大腦反應區域偏向左腦,在左腦額葉處和諧音程的反應較不和諧音程強。
Pleasurability, known as sensory consonance, which is widely regarded as being associated with some regions of the brain such as auditory cortex. Brain plasticity is the ability of a brain to change its structure and function, and the major factor including experience and training. Musician’s brain received long-term musical training is also regarded as an ideal model to investigate plasticity of the human brain. The consonance of interval is a most significant general concept of western tonal music. Some studies indicated that cortical processing of musical consonance conforms to consonance of interval for musicians. This study aims at exploring this cognitive process by behavior experiment, ERPs and fMRI, and the cross-exploration between each experiment. In order to reduce the interference of noise caused by MRI, sparse sampling is used for auditory fMRI. In the behavior experiment, even if the interference of noise, the average accuracy of musicians is still over 80%, and there is no significant trend between the situation inside and outside MRI room.
In the ERPs analysis, there are N1, P2 and N2 components. N1 sources are in localized in the region of the primary auditory cortex, P2 sources are localized in the region of the secondary auditory cortex and N2 sources are in localized in the region of anterior cingulate cortex (ACC). Considering the consonance type, the P2 amplitude evoked by consonant intervals was stronger than by dissonant intervals from musicians and has a significant trend; In the fMRI analysis, we find that for both consonance and dissonance stimuli, activations are all including frontal lobe, temporal lobe, parietal lobe and occipital lobe and left lateralized. In the frontal lobe and limbic lobe of left hemisphere, haemodynamic response of consonant intervals is stronger than dissonant intervals. In the cross-analysis from ERPs to fMRI, we find activations including frontal lobe and limbic lobe in the left hemisphere, the haemodynamic response to consonant intervals are larger than dissonant intervals. The results point out the influence of expertise, musicians could accurately categorize the consonant and dissonant intervals and had enhanced in the secondary auditory cortex. Furthermore, the effect of left lateralized was shown and consonant intervals were found to elicit a larger haemodynamic response in the frontal lobe of left hemisphere.
Amunts, K., Schlaug, G., Jäncke, L., Steinmetz, H., Schleicher, A., Dabringhaus, A., & Zilles, K. (1997). Motor cortex and hand motor skills: Structural compliance in the human brain. Human brain mapping, 5(3), 206-215.
Atienza, M., Cantero, J. L., & Dominguez-Marin, E. (2002). The time course of neural changes underlying auditory perceptual learning. Learning & Memory, 9(3), 138-150.
Babiloni, F., Mattia, D., Babiloni, C., Astolfi, L., Salinari, S., Basilisco, A., . . . Cincotti, F. (2004). Multimodal integration of EEG, MEG and fMRI data for the solution of the neuroimage puzzle. Magnetic Resonance Imaging, 22(10), 1471-1476. doi:http://dx.doi.org/10.1016/j.mri.2004.10.007
Baumgartner, T., Willi, M., & Jäncke, L. (2007). Modulation of corticospinal activity by strong emotions evoked by pictures and classical music: a transcranial magnetic stimulation study. Neuroreport, 18(3), 261-265.
Berman, M. G., Jonides, J., & Nee, D. E. (2006). Studying mind and brain with fMRI. Social cognitive and affective neuroscience, 1(2), 158-161.
Besson, M., & Schön, D. (2001). Comparison between language and music. Annals of the New York Academy of Sciences, 930(1), 232-258.
Bidelman, G. M., & Krishnan, A. (2009). Neural correlates of consonance, dissonance, and the hierarchy of musical pitch in the human brainstem. J Neurosci, 29(42), 13165-13171. doi:10.1523/JNEUROSCI.3900-09.2009
Bosnyak, D., Eaton, R., & Roberts, L. (2002). Enhancement of multiple components of the auditory evoked potential in nonmusicians by training for pitch discrimination with 40-Hz amplitude modulated tones.
Cazden, N. (1945). Musical consonance and dissonance: A cultural criterion. The Journal of Aesthetics and Art Criticism, 4(1), 3-11.
Cousineau, M., McDermott, J. H., & Peretz, I. (2012). The basis of musical consonance as revealed by congenital amusia. Proceedings of the National Academy of Sciences, 109(48), 19858-19863.
D'Esposito, M., Zarahn, E., & Aguirre, G. K. (1999). Event-related functional MRI: implications for cognitive psychology. Psychological bulletin, 125(1), 155.
Debener, S., Ullsperger, M., Siegel, M., & Engel, A. K. (2006). Single-trial EEG–fMRI reveals the dynamics of cognitive function. Trends in cognitive sciences, 10(12), 558-563. doi:http://dx.doi.org/10.1016/j.tics.2006.09.010
Donchin, E. (1979). Event-related brain potentials: A tool in the study of human information processing Evoked brain potentials and behavior (pp. 13-88): Springer.
Duncan, C. C., Rumsey, J. M., Wilkniss, S. M., Denckla, M. B., Hamburger, S. D., & ODOU‐POTKIN, M. (1994). Developmental dyslexia and attention dysfunction in adults: Brain potential indices of information processing. Psychophysiology, 31(4), 386-401.
Fishman, Y. I., Volkov, I. O., Noh, M. D., Garell, P. C., Bakken, H., Arezzo, J. C., . . . Steinschneider, M. (2001). Consonance and dissonance of musical chords: neural correlates in auditory cortex of monkeys and humans. Journal of Neurophysiology, 86(6), 2761-2788.
Frohlich, Z. (1994). Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature, 372(6506), 543-546.
García-Larrea, L., Lukaszewicz, A. C., & Mauguiére, F. (1992). Revisiting the oddball paradigm. Non-target vs neutral stimuli and the evaluation of ERP attentional effects. Neuropsychologia, 30(8), 723-741.
Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. The Journal of Neuroscience, 23(27), 9240-9245.
George, E. M., & Coch, D. (2011). Music training and working memory: an ERP study. Neuropsychologia.
Gilbert, D. T., King, G., Pettigrew, S., & Wilson, T. D. (2016). Comment on “Estimating the reproducibility of psychological science”. Science, 351(6277), 1037-1037.
Golob, E., & Starr, A. (2000). Age-related qualitative differences in auditory cortical responses during short-term memory. Clinical Neurophysiology, 111(12), 2234-2244.
Gore, J. C. (2003). Principles and practice of functional MRI of the human brain. The Journal of clinical investigation, 112(1), 4-9.
Grohol, J. M. Oops! No ‘Replicability Crisis’ in Psychological Science After All.
Gutschalk, A., Patterson, R. D., Rupp, A., Uppenkamp, S., & Scherg, M. (2002). Sustained magnetic fields reveal separate sites for sound level and temporal regularity in human auditory cortex. Neuroimage, 15(1), 207-216.
Hackley, S. A., Woldorff, M., & Hillyard, S. A. (1990). Cross‐Modal Selective Attention Effects on Retinal, Myogenic, Brainstem, and Cerebral Evoked Potentials. Psychophysiology, 27(2), 195-208.
Hall, D. A., & Plack, C. J. (2009). Pitch processing sites in the human auditory brain. Cereb Cortex, 19(3), 576-585. doi:10.1093/cercor/bhn108
Hegerl, U., & Juckel, G. (1993). Intensity dependence of auditory evoked potentials as an indicator of central serotonergic neurotransmission: a new hypothesis. Biological psychiatry, 33(3), 173-187.
Hillyard, S. A., Hink, R. F., Schwent, V. L., & Picton, T. W. (1973). Electrical signs of selective attention in the human brain. Science, 182(4108), 177-180.
Hillyard, S. A., & Picton, T. W. (1987). Electrophysiology of cognition. Comprehensive Physiology.
Hutchinson, S., Lee, L. H. L., Gaab, N., & Schlaug, G. (2003). Cerebellar volume of musicians. Cerebral Cortex, 13(9), 943-949.
Itoh, K., Suwazono, S., & Nakada, T. (2003). Cortical processing of musical consonance: an evoked potential study. Neuroreport, 14(18), 2303.
Johnson, R. (1989). Developmental evidence for modality‐dependent P300 generators: a normative study. Psychophysiology, 26(6), 651-667.
Koelsch, S., Schröger, E., & Tervaniemi, M. (1999). Superior pre-attentive auditory processing in musicians. Neuroreport, 10(6), 1309.
Koelsch, S., & Siebel, W. A. (2005). Towards a neural basis of music perception. Trends in Cognitive Sciences, 9(12), 578-584. doi:10.1016/j.tics.2005.10.001
Kung, C.-C., Hsieh, T.-H., Liou, J.-Y., Lin, K.-J., Shaw, F.-Z., & Liang, S.-F. (2014). Musicians and non-musicians’ different reliance of features in consonance perception: A behavioral and ERP study. Clinical Neurophysiology, 125(5), 971-978. doi:http://dx.doi.org/10.1016/j.clinph.2013.10.016
Kung, C. C., Hsieh, T. H., Liou, J. Y., Lin, K. J., Shaw, F. Z., & Liang, S. F. (2014). Musicians and non-musicians' different reliance of features in consonance perception: a behavioral and ERP study. Clin Neurophysiol, 125(5), 971-978. doi:10.1016/j.clinph.2013.10.016
Laufs, H., Kleinschmidt, A., Beyerle, A., Eger, E., Salek-Haddadi, A., Preibisch, C., & Krakow, K. (2003). EEG-correlated fMRI of human alpha activity. Neuroimage, 19(4), 1463-1476.
Levitin, D. J. (2011). This is your brain on music: Understanding a human obsession: Atlantic Books Ltd.
Liégeois-Chauvel, C., Peretz, I., Babaï, M., Laguitton, V., & Chauvel, P. (1998). Contribution of different cortical areas in the temporal lobes to music processing. Brain, 121(10), 1853-1867.
Liu, C. (2009). Learning-induced Plasticity in Musical Intervals Discrimination and Perception.
Loveless, N. (1983). Event-related brain potentials and human performance. Physiological correlates of human behavior, 2, 79-97.
Luck, S. J., & Hillyard, S. A. (1994). Spatial filtering during visual search: evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 20(5), 1000.
Martınez-Montes, E., Valdés-Sosa, P. A., Miwakeichi, F., Goldman, R. I., & Cohen, M. S. (2004). Concurrent EEG/fMRI analysis by multiway partial least squares. Neuroimage, 22(3), 1023-1034.
McDermott, J. H., Lehr, A. J., & Oxenham, A. J. (2010). Individual differences reveal the basis of consonance. Current Biology, 20(11), 1035-1041.
Mechelli, A., Henson, R. N., Price, C. J., & Friston, K. J. (2003). Comparing event-related and epoch analysis in blocked design fMRI. Neuroimage, 18(3), 806-810.
Michalewski, H., Prasher, D., & Starr, A. (1986). Latency variability and temporal interrelationships of the auditory event-related potentials (N1, P2, N2, and P3) in normal subjects. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 65(1), 59-71.
Minati, L., Rosazza, C., D'Incerti, L., Pietrocini, E., Valentini, L., Scaioli, V., . . . Bruzzone, M. G. (2008). FMRI/ERP of musical syntax: comparison of melodies and unstructured note sequences. Neuroreport, 19(14), 1381-1385.
Minati, L., Rosazza, C., D'Incerti, L., Pietrocini, E., Valentini, L., Scaioli, V., . . . Bruzzone, M. G. (2009). Functional MRI/event-related potential study of sensory consonance and dissonance in musicians and nonmusicians. Neuroreport, 20(1), 87-92.
Moore, H. T. (1914). The genetic aspect of consonance and dissonance. The Psychological Monographs, 17(2), i.
Moore, K. E., & Brennan, J. E. (1996). ALPHA/Sim simulation software tutorial. Paper presented at the Proceedings of the 28th conference on Winter simulation.
Munte, T. F., Altenmuller, E., & Jancke, L. (2002). The musician's brain as a model of neuroplasticity. Nature Reviews Neuroscience, 3(6), 473-477.
Näätänen, R. (1990). The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behavioral and Brain Sciences, 13(02), 201-233.
Neukirch, M., Hegerl, U., Kötitz, R., Dorn, H., Gallinat, U., & Herrmann, W. (2002). Comparison of the amplitude/intensity function of the auditory evoked N1m and N1 components. Neuropsychobiology, 45(1), 41-48.
Nikolsky, A. (2016). Evolution of Tonal Organization in Music Optimizes Neural Mechanisms in Symbolic Encoding of Perceptual Reality. Part-2: Ancient to 17th century. Frontiers in Psychology, 7. doi:10.3389/fpsyg.2016.00211
Novak, G., Ritter, W., & Vaughan, H. G. (1992). Mismatch detection and the latency of temporal judgments. Psychophysiology, 29(4), 398-411.
Panksepp, J., & Bernatzky, G. (2002). Emotional sounds and the brain: the neuro-affective foundations of musical appreciation. Behavioural processes, 60(2), 133-155.
Pantev, C., & Herholz, S. C. (2011). Plasticity of the human auditory cortex related to musical training. Neuroscience & Biobehavioral Reviews.
Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L. E., & Hoke, M. (1998). Increased auditory cortical representation in musicians. Nature, 392(6678), 811-814.
Pantev, C., Roberts, L. E., Schulz, M., Engelien, A., & Ross, B. (2001). Timbre-specific enhancement of auditory cortical representations in musicians. Neuroreport, 12(1), 169.
Pantev, C., Wollbrink, A., Roberts, L. E., Engelien, A., & Lütkenhöner, B. (1999). Short-term plasticity of the human auditory cortex. Brain research, 842(1), 192-199.
Pekkonen, E., Rinne, T., & Näätänen, R. (1995). Variability and replicability of the mismatch negativity. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 96(6), 546-554.
Penagos, H., Melcher, J. R., & Oxenham, A. J. (2004). A neural representation of pitch salience in nonprimary human auditory cortex revealed with functional magnetic resonance imaging. The Journal of Neuroscience, 24(30), 6810-6815.
Peretz, I., Blood, A. J., Penhune, V., & Zatorre, R. (2001). Cortical deafness to dissonance. Brain, 124(5), 928-940.
Perrachione, T. K., & Ghosh, S. S. (2013). Optimized design and analysis of sparse-sampling fMRI experiments. Frontiers in Neuroscience, 7. doi:10.3389/fnins.2013.00055
Polich, J., & Bondurant, T. (1997). P300 sequence effects, probability, and interstimulus interval. Physiology & behavior, 61(6), 843-849.
Pritchard, W. S., Shappell, S. A., & Brandt, M. E. (1991). Psychophysiology of N200/N400: A review and classification scheme. Advances in psychophysiology, 4, 43-106.
Regnault, P., Bigand, E., & Besson, M. (2001). Different brain mechanisms mediate sensitivity to sensory consonance and harmonic context: Evidence from auditory event-related brain potentials. Journal of Cognitive Neuroscience, 13(2), 241-255.
Ritter, W., Simson, R., & Vaughan, H. G. (1983). Event‐related potential correlates of two stages of information processing in physical and semantic discrimination tasks. Psychophysiology, 20(2), 168-179.
Ritter, W., Simson, R., Vaughan, H. G., & Friedman, D. (1979). A brain event related to the making of a sensory discrimination. Science, 203(4387), 1358.
Satterfield, J. H., Schell, A. M., Nicholas, T. W., Satterfield, B. T., & Freese, T. E. (1990). Ontogeny of selective attention effects on event-related potentials in attention-deficit hyperactivity disorder and normal boys. Biological psychiatry, 28(10), 879-903.
Schellenberg, E. G., & Trehub, S. E. (1994). Frequency ratios and the perception of tone patterns. Psychonomic Bulletin & Review, 1(2), 191-201.
Schneider, P., Scherg, M., Dosch, H. G., Specht, H. J., Gutschalk, A., & Rupp, A. (2002). Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians. Nature neuroscience, 5(7), 688-694.
Schwarzbauer, C., Davis, M. H., Rodd, J. M., & Johnsrude, I. (2006). Interleaved silent steady state (ISSS) imaging: a new sparse imaging method applied to auditory fMRI. Neuroimage, 29(3), 774-782.
Semendeferi, K., Armstrong, E., Schleicher, A., Zilles, K., & Van Hoesen, G. W. (2001). Prefrontal cortex in humans and apes: a comparative study of area 10. American journal of physical anthropology, 114(3), 224-241.
Shahin, A., Bosnyak, D. J., Trainor, L. J., & Roberts, L. E. (2003). Enhancement of neuroplastic P2 and N1c auditory evoked potentials in musicians. The Journal of Neuroscience, 23(13), 5545-5552.
Shahin, A., Roberts, L. E., Pantev, C., Trainor, L. J., & Ross, B. (2005). Modulation of P2 auditory-evoked responses by the spectral complexity of musical sounds. Neuroreport, 16(16), 1781.
Starr, A., & Barrett, G. (1987). Disordered auditory short-term memory in man and event-related potentials. Brain: a journal of neurology, 110, 935-959.
Terhardt, E. (1984). The concept of musical consonance: A link between music and psychoacoustics. Music Perception, 276-295.
Tervaniemi, M., Just, V., Koelsch, S., Widmann, A., & Schröger, E. (2005). Pitch discrimination accuracy in musicians vs nonmusicians: an event-related potential and behavioral study. Experimental Brain Research, 161(1), 1-10.
Tramo, M. J., Shah, G. D., & Braida, L. D. (2002). Functional role of auditory cortex in frequency processing and pitch perception. Journal of neurophysiology, 87(1), 122-139.
Tremblay, K., Kraus, N., McGee, T., & Ponton, C. (2001). Central auditory plasticity: changes in the N1-P2 complex after speech-sound training. Ear and hearing, 22(2), 79.
Tsao, Y. H. (2008). Musical consonance perception in musicians vs nonmusicians: an event-related potential and behavioral study.
Zatorre, R. J., & Krumhansl, C. L. (2002). Mental models and musical minds. Science, 298(5601), 2138-2139.
Zwicker, E., Flottorp, G., & Stevens, S. S. (1957). Critical band width in loudness summation. The journal of the Acoustical Society of America, 29, 548.
Zysset, S., Huber, O., Ferstl, E., & von Cramon, D. Y. (2002). The anterior frontomedian cortex and evaluative judgment: an fMRI study. Neuroimage, 15(4), 983-991. doi:10.1006/nimg.2001.1008
校內:2021-08-08公開