研究生: |
吳柏旻 Wu, Buo-Ming |
---|---|
論文名稱: |
空氣冷凝器之性能測試與分析及電腦輔助設計軟體之開發 The Experimental Study of Air Cooled Condenser and The Development of Computer Aided-Design Softwares |
指導教授: |
張錦裕
Jang, Jiin-Yuh |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 空氣冷凝器 、橢圓鰭片式熱交換器 、電腦輔助設計軟體 |
外文關鍵詞: | Air-cooled condenser, Oval fin heat exchanger, CAE Software |
相關次數: | 點閱:152 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文總共分兩個部分,第一部分使用吸入型開放式風洞對圓形及橢圓形鰭片鰭管式熱交換之測試本體(其中橢圓管長短軸比為2.5、2.8及3.1)做熱液動性能分析,分別找出其熱傳因子j和壓降因子f,並找出其對Re之關係圖相比較。第二部分在開發一套空氣冷凝器之電腦輔助分析及設計軟體。
熱交器熱液動性能分析部分:影響鰭管式熱交換器之性能除了熱交換器本體之鰭片間距,鰭片材質等之外,鰭片型式亦是一個重要因素。本論文除了改變熱交換器鰭片長短軸比及管陣的排列方式外,另外測試了總共有兩種不同鰭片形式的熱交換器。從實驗結果看出:圓形鳍片比橢圓鳍片的熱傳效果較好外,其中橢圓鳍片長短軸比越近似圓形熱傳效果越好(2.5 > 2.83 > 3.1)。由實驗結果發現在入口風速1~6 m/s下,當空氣通過時,空氣側熱傳係數會隨著正向速度的增加而增加,其中交錯排列式鰭片鰭管熱交換器的熱傳因子j值比對齊排列式大10~26%。
熱交換器電腦輔助分析及設計軟體部分:本論文建立了一套分析及設計軟體,使用者經過簡單的操作,可以分析已知尺寸及性質,也可以由所需的操作條件設計出最適合的熱交換器之尺寸及性能。
This study was focused on the investigation of air-cooled condensers, including two main parts as expressed in the following.
First, the open wind tunnel was used to study the circular and oval fin air-cooled condensers experimentally. These air-cooled condensers involved the ratios (Ar) of its minor axis to major axis are 1, 2.5, 2.8, and 3.1, respectively. The relationships between the Colburn factor j and the Reynolds number/the ratio (Ar) were presented. Moreover, the relationships between the friction factor and the Reynolds number/the ratio (Ar) were also presented.
Second, there is an interactive computer-aided design software for the air-cooled condensers was developed. It has been written by Visual Basic 6.0 and can be run in any personal computer. The software has the following two functions:
(1) Predicting the performance of a radiator when the dimensions are given.
(2) Determining the necessary size of a radiator when given the required performance.
At last, the experimental results were demonstrated by the computer-aided design software. The results show that the efficiency of circular air-cooled condenser is better than oval air-cooled condenser.
1. Briggs, D.E. and Young, E. H., Convection Heat transfer and pressure Drop of Air Flowing across Triangular Pitch Banks of Finned Tubes, Chem. Eng. Prog. Symp. Ser., Vol.59, No.41, pp. 1-10, 1963.
2. Robinson, K. K. and Briggs, D. E., Pressure Drop of Air Flowing across Triangular Pitch Banks of Finned Tubes, Chem. Eng. Prog. Symp. Ser., Vol.62, No.64, pp. 177-184, 1966.
3. Gray, D. L. and Webb, R. L., Heat Transfer and Friction Correlations for Plate Fin-and-Tube Heat Exchangers Having Plain Fins, Proc. 9th Int. Heat Transfer Conference, San Francisco, U.S.A., 1986.
4. Wang, C. C., Jang, J. Y., and Chiou, N. F., A Heat Transfer and Friction Correction for Wavy Fin and Tube Heat Exchangers, Int. J. of Heat Mass Transfer, Vol.42, No.10, pp. 1919-1924, 1999.
5. Dunwoody, N. T., Thermal Results for Forced Heat Convection through Elliptic Ducts, J. of Applied Mech., Vol.29, pp. 165-170, 1962.
6. Schenk, J. and Han, B. S., Heat Transfer from Laminar Flow in Ducts with Elliptic Cross Section, Appl. Sci. Res., Vol.17, pp. 96-114., 1967.
7. Brauer, H., Compact Heat Exchangers, Chem.&Process Engineering, London, Vol.45, No.8, pp. 451-460, 1964.
8. .Liu, M. S., Leu, J. S., Liaw, J. S., and Wang, C. C., 3-D Simulation of the Thermal-Hydraulic Characteristics of Louvered Fin-and-Tube Heat Exchangers with Oval Tubes, Symposium on The Use of Computational Fluid Dynamics in Heat Exchanger Design, 2000 ASHRAE ANNUAL MEETING, Minneapolis, MN, June 24-28.
9. Jang, J. Y. and Yang, J. Y., Experimental and 3-D Numerical Analysis of the Thermal-Hydraulic Characteristics of Elliptic Finned-Tube Heat Exchangers, Heat Transfer Engineering, Vol.19, No.4, pp. 55-67, 1998.
10. Singh S.K., Kumar R. and B. M, Heat transfer during conensation over a vertical grid of horizontal integral-fin copper tubes, Applied Thermal Engineering,Vol.21, pp 717-730, 2001.
11. Sieder E.N. and Tate G.E.,Heat transfer and pressure drop of liquid in tubes,Indust.Engng.Chem. ,Vol.28,pp1429-1436,1936.
12. Al-Ansari A.D. and Owen I., Thermal and Hydrodynamic Analysis Of The Condensation And Evaporation Processes In Horizontal Tube Desalination Plant, International Journal Of Heat and Mass Transfer,Vol.42,pp1633-1644,1999.
13. Hsu P.T., Liu Y.H., Wang S.G. and Chen C.K., An inverse approach for estimation of the surface heat flux distribution on a horizontal elliptical tube with laminar film condensation, Chemical Engineering Journal , Vol. 85, pp 189-195, 2002.
14. Kim S.J. and No H.C., Turbulent film condensation of high pressure steam in a vertical tube,International Journal of Heat and Mass Transfer, Vol. 43, pp 4031-4042, 2000.
15. A C., D D.C., L D., Longo GA,Rossetto L,Pressure drop during condensation and vaporization of refrigerants inside enhanced tubes,Heat and Technology,Vol.15,pp 3-10, 1997.
16. AL S., MM. P., Prediction of pressure drop during horizontal two-phase flow of pure and mixed refrigerants.Conf.Cavitation and Multiphase Flow,HTD-210,pp 61-71 ,1995.
17. D. C., Two-Phase flow in Pipelines and Heat Exchangers, Longman Inc,New York, 1983.
18. Col D.D., D. L., Longo GA., L. R., Heat transfer and pressure drop during condensation of refrigerants inside horizontal enhanced tubes,International Journal of refrigeration,Vol.23,pp4-25,2000
19. Pate M.B., Ayub Z.H. and K.J., Heat exchangers for the air-conditioning industry:Sate-of-the-art design and technology,Heat Transfer Engineering, Vol. 12, pp. 56-70, 1991.
20. W.Nusselt. and D.O.Z. Vereines Deutsch. Ing.60,pp 541-546,569-575, 1916.
21. Cheng B., Tao W.Q., Experimental study of R-152a film condensation on single horizontal smooth tube and enhance tubes,Journal of Heat Transfer, Vol. 116, pp 266-270, 1994.
22. Yilbas B.S. and Altuntop N., Condensing heat transfer of Freon-21 on plain horizontal tubes and enhance tubes,Journal of Heat Transfer, Vol. 116, pp 266-270, 1994.
23. Nguyen T.N., Orozco J.A., Condensation of R-113 on enhanced surfaces, ASHRAE Transactions Part 1, Vol. 100, pp 736-743, 1994.
24. Beatty K.O. and Katz D.L., Condensation of vapors on outside of finned tubes , Chemical Engineering Prog., Vol. 44, pp 55-70, 1980.
25. Cheng W.Y. and Wang C.C., Condensation of R-134a on enhanced tubes, ASHRAE Trans.100 part 2. pp 809-817,1994.
26. B., D. and P.A., Efficiency of Cooled Extended Surfaces, International Journal of Refrigeration, Vol. 21, pp 372-380, 1998.
27. Jang, J. Y., and Yang, J. Y., Experimental and Numerical Analysis of the Thermal-Hydraulic Characteristics of Elliptic Finned-Tube Heat Exchangers, Heat Transfer EngineerIng, Vol. 19, No. 4, pp 55-67, 1998.
28. Shah, R. K., Heat Exchanger Basic Design Methods, Low Reynolds Number Flow Heat Exchanger, edit by S. Kakac, R. K. Shah and A. E. Bergles, Hemisphere, New York, pp. 21-72, 1983.
29. Shan K., Heat Exchangers Basic Design Method, in Low Reynolds Number Flow Heat Exchangers,Edited by S. KaKas,R. K. Shah,and A. E. Bergles,pp. 21-72,Hemisphere/McGraw-Hill,Washington, D. C.,1983.
30. Eckert E.R. and Drake R.M., Heat and Mass Transfer, McGraw-Hill Inc.,New York,1959.
31. Chato, J.C., Laminar Condensation Inside Horizontal and Inclined Tubes, J. ASHRAE, 4, 52, 1962.
32. Friedel, L., New Friction Pressure Drop Correlations for Upward,Horizontal and Downward Two-Phase Pipe Flow , Presented at the HTFS Symposium,Oxford.(Hoechst AG Reference 372217/24698), 1979.
33. Wang H.S., Rose J.W., Honda H., Condensation of refrigerants in horizontal microfin tubes:comparison of correlations for frictional pressure drop,International Journal of Refrigeration 26, Vol.461-472,2003.
34. Tubular Exchanger Manufacturers Association, Standards of the Tubular Exchanger Manufacturers Association,6th Editor.,New York,1978.
35. Gianolio E. and Cuti F., Heat Transfer Coefficients and Pressure Drop for Air Coolers Under Induced and Forced Draft, Heat Transfer Eng. Vol.3,NO.1,pp38-48,1981.