| 研究生: |
陳泓宇 Chen, Hung-Yu |
|---|---|
| 論文名稱: |
撲翼微型飛行器之縱向動態模型建構 Longitudinal Dynamic Model Construction For a Flapping Wing Micro Air Vehicle. |
| 指導教授: |
陳偉良
Chan, Woei-Leong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2024 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 週期平均模型 、縱向動態模型 、穩定性導數 |
| 外文關鍵詞: | Cycle-averaged model, Longitudinal Dynamic, stability derivatives |
| 相關次數: | 點閱:61 下載:26 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在建立撲翼微型飛行器的縱向動態模型。研究中設計並製造了一個可以飛行的撲翼微型飛行器,並構建了實驗環境來進行動態模型的分析。利用高速攝影機捕捉飛行狀態,並使用機器手臂配合荷重元來精確測量微型飛行器的力與力矩,並採用平均週期模型來確定其縱向動態穩定性導數。首先,介紹了撲翼微型飛行器的基本原理和設計特點,以及風扇陣列模擬風洞實驗的裝置。其次,詳細描述了建構縱向動態模型的過程,包括力與力矩的測量、週期平均模型的建立等。最後,討論了研究結果和存在的問題,並提出了未來的改進方向。本研究對於撲翼微型飛行器的縱向動態特性研究提供了重要的理論基礎和實驗驗證,對其應用和發展具有一定的參考價值。
This study aims to establish a longitudinal dynamic model for a flapping wing micro aerial vehicle (FWMAV). In this research, a flyable FWMAV was designed and manufactured, and an experimental environment was constructed to analyze the dynamic model. High-speed cameras were used to capture the flight state, and a robotic arm equipped with load cells was utilized to accurately measure the forces and moments on the micro aerial vehicle. A period-averaged model was employed to determine its longitudinal dynamic stability derivatives. Firstly, the basic principles and design characteristics of the FWMAV are introduced, along with a description of the fan array device used to simulate a wind tunnel experiment. Secondly, the process of constructing the longitudinal dynamic model is detailed, including the measurement of forces and moments and the establishment of the period-averaged model. Finally, the research results and existing issues are discussed, and future improvement directions are proposed. This study provides important theoretical foundations and experimental validation for the longitudinal dynamic characteristics of FWMAVs, offering valuable references for their application and development.
[1] Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. ACM SIGGRAPH Computer Graphics, 21(4), 25–34. https://doi.org/10.1145/37402.37406
[2] Tangudomkit, K., & Smithmaitrie, P. (2021). Aerodynamic experimental investigation and analysis of the flow and thrust generation of the flexible flat flapping wing robot. 2021 Second International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP), Bangkok, Thailand, 2021, Pp. 1-6, Doi: 10.1109/ICA-SYMP50206.2021.9358247. https://doi.org/10.1109/ica-symp50206.2021.9358247
[3] Shi, Y., He, W., Guo, M., Xia, D., Luo, X., & Ji, X. (2022). Mechanism design and motion analysis of a Flapping-Wing air vehicle. Mathematical Problems in Engineering, 2022, 1–11. https://doi.org/10.1155/2022/7920914
[4] W.-L. Chan*, H.-Y. Chen, C.-L. Chin, and C.-H. Huang, 2024. “A Bio-Inspired Micro Air Vehicle and the Experimental Setup for Aerodynamic Testing” International Micro Air Vehicle Conference and Competition, Bristol, UK, 2024.
[5] Nelson, R. C. (1998). Flight stability and automatic control. WCB/McGraw-Hill.
[6] Taylor, G. K., & Thomas, A. L. R. (2002). Animal Flight Dynamics II. Longitudinal stability in flapping flight. Journal of Theoretical Biology, 214(3), 351–370. https://doi.org/10.1006/jtbi.2001.2470
[7] Zureks https://commons.wikimedia.org/w/index.php?curid=1835361
[8] Rose, C. J., & Fearing, R. S. (2014). Comparison of ornithopter wind tunnel force measurements with free flight. 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 2014, Pp. 1816-1821, Doi: 10.1109/ICRA.2014.6907097. https://doi.org/10.1109/icra.2014.6907097
[9] Chan, W. L., Jaffar, M. a. B., & Nguyen, Q. V. (2016). Preliminary Study on Stability of a Hovering Bi-flap Flapping Wing Platform using Cycle-Averaged Linear Models. The Journal of Instrumentation Automation and Systems, 1(3), 84–90. https://doi.org/10.21535/jias.v1i3.168
[10] Nguyen, Q., Chan, W., & Debiasi, M. (2014). Design, Fabrication, and Performance Test of a Hovering-Based Flapping-Wing Micro Air Vehicle Capable of Sustained and Controlled Flight. 2014 International Micro Air Vehicle Conference and Competition (IMAV 2014) at: Delft, the Netherlands. https://doi.org/10.4233/uuid:38f8dd5b-9999-4359-902c-c68ae3e278f8
[11] De Croon, G. C. H. E., Groen, M. A., De Wagter, C., Remes, B., Ruijsink, R., & Van Oudheusden, B. W. (2012). Design, aerodynamics and autonomy of the DelFly. Bioinspiration & Biomimetics, 7(2), 025003. https://doi.org/10.1088/1748-3182/7/2/025003
[12] Preumont, A., Wang, H., Kang, S., Wang, K., & Roshanbin, A. (2021). A note on the electromechanical design of a robotic hummingbird. Actuators, 10(3), 52. https://doi.org/10.3390/act10030052
[13] Bhatti, M. Y., & Addo-Akoto, R. (2022). Influence of Wing Kinematics on Lateral Dynamic Stability of Bioinspired Flapping Wing Micro Air Vehicle involving Multibody Dynamics. 2022 19th International Bhurban Conference on Applied Sciences and Technology (IBCAST). https://doi.org/10.1109/ibcast54850.2022.9990072
[14] Duan, H., & Li, Q. (2009). Dynamic model and attitude control of Flapping Wing Micro Aerial Vehicle. 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), Guilin, China, 2009, Pp. 451-456, Doi: 10.1109/ROBIO.2009.5420689. https://doi.org/10.1109/robio.2009.5420689