| 研究生: |
陳沅湘 Chen, Yuan-Hsiang |
|---|---|
| 論文名稱: |
順向排列之導電性奈米纖維結合電脈衝刺激對於C2C12肌小管細胞形成與成熟之影響 Effect of Electrical Pulse Stimulation on the Formation and Maturation of Myotubes on Aligned Conductive Nanofibrous Scaffolds |
| 指導教授: |
陳美瑾
Chen, Mei-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 導電性奈米纖維 、電脈衝刺激 、骨骼肌細胞 、細胞分化 |
| 外文關鍵詞: | electrically conductive nanofiber, electrical pulse stimulation, skeletal muscle, differentiation |
| 相關次數: | 點閱:135 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
骨骼肌是由肌母細胞(Myoblasts)相互融合分化成多核之肌小管(Myotube),最後再成熟成為肌纖維(Myofiber),以便進行收縮功能。因此,由肌母細胞分化成為成熟肌小管的過程,在骨骼肌組織工程中扮演相當重要的角色。在本研究中,我們利用具有順向排列與導電性的複合奈米纖維作為細胞支架(Cell scaffold)以刺激肌母細胞分化,接著搭配電脈衝刺激進一步使肌小管成熟並促進其功能性收縮單位肌節(Sacromere)之形成。實驗中,將含有導電性高分子Polyaniline (PANi)之Poly‐ε‐caprolactone (PCL)溶液,以靜電紡織技術結合磁場輔助收集器,製備出具有高度順向性與導電性之奈米纖維。Aligned‐PCL/PANi奈米纖維之直徑大小為307.6 ± 39.6 nm,且擁有高度順向之特性(夾角小於10°的纖維絲占90%);細胞相容性測試結果顯示,C2C12肌母細胞可正常貼附並順向生長於奈米纖維上,且摻雜PANi後的奈米纖維相較於純PCL奈米纖維更能促進肌母細胞的增生;在細胞分化5天後,Aligned‐PCL/PANi相較於Random‐PCL/PANi可明顯提升其肌小管數目(38.9 ± 2.0 vs. 30.3 ± 2.4)、長度(198.3 ± 22.2 μm vs. 147.2 ± 30.7 μm)、融合指數(36.7 ± 1.3% vs. 27.9 ± 3.2%)和成熟指數(53.2 ± 2.2% vs. 44.2 ± 3.0%)之分化程度。最後探討Aligned‐PCL/PANi搭配電脈衝刺激對促進肌小管分化之程度與肌節形成之影響。結果表示,經電脈衝刺激後,可以大幅度的提升肌小管分化之程度,在分化9天後其肌小管數目(76.3 ± 2.1vs. 65.7 ± 3.3)、長度(425.5 ± 54.2 μm vs. 369.4 ± 30.2 μm)和融合指數(86.0 ± 2.2% vs. 80.3 ± 1.6%)均較未經電脈衝刺激者優異;在肌節形成之比例上,經第七天開始電脈衝刺激並且連續刺激24小時後,能夠獲得約47%的肌節橫紋比例,證實電脈衝刺激,可以有效的幫助肌小管發展成功能性的收縮單位。以上結果顯示,本研究成功開發出具有順向排列和導電性的奈米纖維,將其搭配電脈衝刺激後,可以有效促進肌小管分化與肌節形成,將可應用於骨骼肌組織修復與再生。
Skeletal muscle tissue is compared of bundles of highly oriented and densely packed muscle fibers, each with multinucleated myotubes derived from myoblasts. Therefore, the process of myotube formation from myoblasts plays an important role for skeletal muscle tissue engineering. The goal of this study was to examine the differentiation of skeletal myoblasts on aligned and electrically conductive nanofibrous scaffolds, and then investigate the effect of electrical pulse stimulation (EPS) combined with this scaffolds on myotubes maturation and functional sarcomere assembly. The aligned and electrically conductive nanofibers composed of poly-ε-caprolactone (PCL) and polyaniline (PANi) were fabricated by a magnetic-field-assisted electrospinning (MFAES) method. The diameter of Aligned-PCL/PANi nanofibers was 307.6 ± 39.6 nm with highly oriented structure (> 90% fibers within ± 10° of the preferred direction). The cell viability results indicated that Aligned-PCL/PANi nanofibers induced myoblasts alignment and significantly enhanced cell proliferation compared to Aligned-PCL nanofibers. After differentiation for 5 days, the myotube number and length, fusion index and degree of maturation of Aligned-PCL/PANi were greater (38.9 ± 2.0, 198.3 ± 22.2 μm, 36.7 ± 1.3% and 53.2 ± 2.2%) than that of Random-PCL/PANi (30.3 ± 2.4, 147.2 ± 30.7 μm, 27.9 ± 3.2% and 44.2 ± 3.0%). Finally, we investigated the effect of EPS on myotube maturation and sarcomere assembly on the Aligned-PCL/PANi. We found EPS could enhance the myotube formation and maturation. The myotube number and length, fusion index and maturation index of myocytes on Aligned-PCL/PANi with EPS at day 9 for 12 h were greater (76.3 ± 2.1, 425.5 ± 54.2 μm and 86.0 ± 2.2%) than that without EPS (65.7 ± 3.3, 369.4 ± 30.2 μm and 80.3 ± 1.6%). Additionally, when EPS was applied at day 7 for 24 h, the percentage of striated myotubes can reach to 47%. These results indicate that aligned and electrically conductive nanofibers can modulate the induction of myoblasts into mature and striated myotubes when EPS was applied, suggesting that the combined strategy have great potential for skeletal muscle tissue engineering.
[1] Langer R, Vacanti JP. Tissue engineering. Science 1993;260:920-26.
[2] 楊志明(2005),組織工程,台北市:九州圖書。
[3] Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 2011;6:13-22.
[4] Rossi MID, Barros APDN, Baptista LS, Garzoni LR, Meirelles MN, Takiya CM, et al. Multicellular spheroids of bone marrow stromal cells: a three-dimensional in vitro culture system for the study of hematopoietic cell migration. Braz J Med Biol Res 2005;38:1455-62.
[5] 李宣書(2001),「淺談組織工程」,物理雙月刊,第廿四卷第三期,頁430。
[6] Radisic M, Park H, Martens TP, Salazar-Lazaro JE, Geng W, Wang Y, et al. Pre-treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue. J Biomed Mater Res Part A 2008;86:713-24.
[7] Kraehenbuehl TP, Zammaretti P, Van der Vlies AJ, Schoenmakers RG, Lutolf MP, Jaconi ME, et al. Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: systematic modulation of a synthetic cell-responsive PEG-hydrogel. Biomaterials 2008;29:2757-66.
[8] Haraguchi Y, Shimizu T, Yamato M, Kikuchi A, Okano T. Electrical coupling of cardiomyocyte sheets occurs rapidly via functional gap junction formation. Biomaterials 2006;27:4765-74.
[9] Uebersax L, Hagenmuller H, Hofmann S, Gruenblatt E, Muller R, Vunjak G, et al. Effect of scaffold design on bone morphology in vitro. Tissue Eng 2006;12:3417-29.
[10] Prabhakaran MP, Venugopal J, Ramakrishna S. Electrospun nanostructured scaffolds for bone tissue engineering. Acta biomaterialia 2009;5:2884-93.
[11] Son WK, Youk JH, Lee TS, Park WH. The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer 2004;45:2959-66.
[12] Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel?**. Adv Mater 2004;16:1151-70.
[13] Kameoka J, Orth R, Yang Y, Czaplewski D, Mathers R, Coates GW, et al. A scanning tip electrospinning source for deposition of oriented nanofibres. Nanotechology 2003:1124-29.
[14] Theron A, Zussman E, Yarin AL. Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechology 2001;12:384-90.
[15] Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compo Sci Technol 2003;63:2223-53.
[16] Li D, Wang Y, Xia Y. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layerstacked films**. Adv Mater 2004;16:361-66.
[17] Choi JS, Lee SJ, Christ GJ, Atala A, Yoo JJ. The influence of electrospun aligned poly(epsilon-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials 2008;29:2899-906.
[18] Liu Y, Zhang X, Xia Y, Yang H. Magnetic-field-assisted electrospinning of aligned straight and wavy polymeric nanofibers. Adv Mater 2010;22:2454-7.
[19] Shao S, Zhou S, Li L, Li J, Luo C, Wang J, et al. Osteoblast function on electrically conductive electrospun PLA/MWCNTs nanofibers. Biomaterials 2011;32:2821-33.
[20] McKeon KD, Lewis A, Freeman JW. Electrospun poly(D,L-lactide) and polyaniline scaffold characterization. J Appl Polym Sci 2010;115:1566-72.
[21] Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Baharvand H, Kiani S, et al. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J Tissue Eng Regen Med 2011;5:e17-e35.
[22] Lee JY, Bashur CA, Goldstein AS, Schmidt CE. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 2009;30:4325-35.
[23] Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S. Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering. Tissue Eng Part A 2009;15:3605-19.
[24] Jun I, Jeong S, Shin H. The stimulation of myoblast differentiation by electrically conductive sub-micron fibers. Biomaterials 2009;30:2038-47.
[25] Liao IC, Liu JB, Bursac N, Leong KW. Effect of electromechanical stimulation on the maturation of myotubes on aligned electrospun fibers. Cell Mol Bioeng 2008;1:133-45.
[26] Lauralee Sherwood (2010), Human physiologr: from cells to system (7th ed), Australia: Brooks/Cole, Cengage Learning.
[27] 肌纖維的基本構造,Website: (http://pinitlink.net/images/2012/07/muscle-fibers-what-are-they-and-the-way-do-they-differ_te-w-_0.jpgs)。
[28] Huxley H. The mechanism of muscular contraction. Science 1969;164:1356-66.
[29] Yaffe D, Saxel O. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 1977;270:725-27.
[30] Horsely V, Jansen KM, Mills ST, Pavlath GK. IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 2003;113:483-94.
[31] Stockdale FE. Myogenic cell lineages. Dev Biol 1992;154:284-98.
[32] Aubin H, Nichol JW, Hutson CB, Bae H, Sieminski AL, Cropek DM, et al. Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials 2010;31:6941-51.
[33] Baker SC, Atkin N, Gunning PA, Granville N, Wilson K, Wilson D, et al. Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies. Biomaterials 2006;27:3136-46.
[34] Bajaj P, Reddy B, Jr., Millet L, Wei C, Zorlutuna P, Bao G, et al. Patterning the differentiation of C2C12 skeletal myoblasts. Intrg Biol 2011;3:897-909.
[35] Huang NF, Patel S, Thakar RG, Wu J, Hsiao BS, Chu B, et al. Myotube assembly on nanofibrous and micropatterned polymers. Nano Lett 2006;6:537-42.
[36] Nagamine K, Kawashima T, Sekine S, Ido Y, Kanzaki M, Nishizawa M. Spatiotemporally controlled contraction of micropatterned skeletal muscle cells on a hydrogel sheet. Lab Chip 2011;11:513-7.
[37] Cimetta E, Pizzato S, Bollini S, Serena E, De Coppi P, Elvassore N. Production of arrays of cardiac and skeletal muscle myofibers by micropatterning techniques on a soft substrate. Biomed microdevices 2009;11:389-400.
[38] Rowlands AS, Cooper-White JJ. Directing phenotype of vascular smooth muscle cells using electrically stimulated conducting polymer. Biomaterials 2008;29:4510-20.
[39] Liao S, Li B, Ma Z, Wei H, Chan C, Ramakrishna S. Biomimetic electrospun nanofibers for tissue regeneration. Biomed Mater 2006;1:R45-53.
[40] Zhang Z, Rouabhia M, Wang Z, Roberge C, Shi G, Roche P, et al. Electrically conductive biodegradable polymer composite for nerve regeneration: electricity-stimulated neurite outgrowth and axon regeneration. Artif Organs 2007;31:13-22.
[41] Gomez N, Schmidt CE. Nerve growth factor-immobilized polypyrrole: bioactive electrically conducting polymer for enhanced neurite extension. J Biomed Mater Res A 2007;81:135-49.
[42] Brdez PR, Li S, Macdiarmid AG, Venancio EC, Wei Y, Lelkes PI. Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts. J Biomater Sci Polym Ed 2006;17:199-212.
[43] Gilmore KJ, Kita M, Han Y, Gelmi A, Higgins MJ, Moulton SE, et al. Skeletal muscle cell proliferation and differentiation on polypyrrole substrates doped with extracellular matrix components. Biomaterials 2009;30:5292-304.
[44] Thompson BC, Richardson RT, Moulton SE, Evans AJ, O'Leary S, Clark GM, et al. Conducting polymers, dual neurotrophins and pulsed electrical stimulation-dramatic effects on neurite outgrowth. J Control Release 2010;141:161-7.
[45] Schmidt CE, Shastri VR, Vacanti JP, Langer R. Stimulation of neurite outgrowth using an electrically conducting polymer. Proc Natl Acad Sci USA 1997;94:8948-53.
[46] Serena E, Figallo E, Tandon N, Cannizzaro C, Gerecht S, Elvassore N, et al. Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species. Exp Cell Res 2009;315:3611-9.
[47] Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci USA 2004;101:18129-34.
[48] Kloth LC. Electrical stimulation for wound healing: a review of evidence from in vitro studies, animal experiments, and clinical trials. Int J Low Extrem Wounds 2005;4:23-44.
[49] Mcciag CD, Rajnicek AM, Song B, Zhao M. Controlling cell behavior electrically: current views and future potential. Physiol Rev 2005;85:943-78.
[50] Kumar A, Murphy R, Robinson P, Wei L, Boriek AM. Cyclic mechanical strain inhibits skeletal myogenesis through activation of focal adhesion kinase, Rac-1 GTPase, and NF-kappaB transcription factor. FASEB J 2004;18:1524-35.
[51] Ruoslahti E. Stretching is good for a cell. Science 1997;276:1345-6.
[52] Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A. Poly-epsilon-caprolactone microspheres and nanospheres: an overview. Int J Pharmacent 2004;278:1-23.
[53] Cao Y, Smith P, Heeger AJ. Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers. Synth Met 1992;48:91-7.
[54] Laska J. Conformations of polyaniline in polymer blends. J Mol Struct 2004;701:13-8.
[55] Feast WJ, Pouwer JTKL, Groenendaal L, Meijer EW. Synthesis, processing and material properties of conjugated polymers. Polymer 1996;37:5017-47.
[56] 孫鈺欽(2011),開發具有高度順向之導電性奈米複合纖維作為功能型細胞支架之研究,國立成功大學化學工程所碩士論文。
[57] Yang D, Lu B, Zhao Y, Jiang X. Fabrication of aligned fibrous arrays by magnetic electrospinning. Adv Mater 2007;19:3702-6.
[58] Charest JL, Garcia AJ, King WP. Myoblast alignment and differentiation on cell culture substrates with microscale topography and model chemistries. Biomaterials 2007;28:2202-10.
[59] Ku SH, Park CB. Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering. Biomaterials 2010;31:9431-7.
[60] Jeong SI, Jun ID, Choi MJ, Nho YC, Lee YM, Shin H. Development of electroactive and elastic nanofibers that contain polyaniline and poly(L-lactide-co-epsilon-caprolactone) for the control of cell adhesion. Macromol Biosci 2008;8:627-37.
[61] Useful numbers for cell culture, website: (http://www.invitrogen.com/site/us/en/home/References/gibco-cell-culture-basics/cell-culture-protocols/cell-culture-useful-numbers.html#prot1).
[62] Langelaan ML, Boonen KJ, Rosaria-Chak KY, van der Schaft DW, Post MJ, Baaijens FP. Advanced maturation by electrical stimulation: differences in response between C2C12 and primary muscle progenitor cells. J Tissue Eng Regen Med 2011;5:529-39.
[63] Kretsinger JK, Haines LA, Ozbas B, Pochan DJ, Schneider JP. Cytocompatibility of self-assembled beta-hairpin peptide hydrogel surfaces. Biomaterials 2005;26:5177-86.
[64] Berridge MV, Herst PM, Tan AS. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 2005;11:127-52.
[65] Chen MC, Tsai HW, Liu CT, Peng SF, Lai WY, Chen SJ, et al. A nanoscale drug-entrapment strategy for hydrogel-based systems for the delivery of poorly soluble drugs. Biomaterials 2009;30:2102-11.
[66] Live/Dead Viability-Cytotoxicity Kit protocol.
[67] Zhou JC, Yang ZL, Dong W, Tang RJ, Sun LD, Yan CH. Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb,Tm nanocrystals. Biomaterials 2011;32:9059-67.
[68] Fujita H, Shimizu K, Nagamori E. Novel method for measuring active tension generation by C2C12 myotube using UV-crosslinked collagen film. Biotechnol Bioeng 2010;106:482-9.
[69] Cell Counting Kit-8 Technical Manual.
[70] Fujita H, Nedachi T, Kanzaki M. Accelerated de novo sarcomere assembly by electric pulse stimulation in C2C12 myotubes. Exp Cell Res 2007;313:1853-65.
[71] Sun Y, Ge Y, Drnevich J, Zhao Y, Band M, Chen J. Mammalian target of rapamycin regulates miRNA-1 and follistatin in skeletal myogenesis. J Cell Biol 2010;189:1157-69.
[72] Donnelly K, Khodabukus A, Philp A, Deldicque L, Dennis RG, Baar K. A novel bioreactor for stimulating skeletal muscle in vitro. Tissue Eng Part C 2010;16:711-18.
[73] Park H, Bhalla R, Saigal R, Radisic M, Watson N, Langer R, et al. Effects of electrical stimulation in C2C12 muscle constructs. J Tissue Eng Regen Med 2008;2:279-87.
[74] Kawahara Y, Yamaoka K, Iwata M, Fujimura M, Kajiume T, Magaki T, et al. Novel electrical stimulation sets the cultured myoblast contractile function to 'on'. Pathobiology 2006;73:288-94.
[75] Kaji H, Ishibashi T, Nagamine K, Kanzaki M, Nishizawa M. Electrically induced contraction of C2C12 myotubes cultured on a porous membrane-based substrate with muscle tissue-like stiffness. Biomaterials 2010;31:6981-6.
[76] Serena E, Flaibani M, Carnio S, Boldrin L, Vitiello L, Elvassore N, et al. Electrophysiologic stimulation improves myogenic potential of muscle precursor cells grown in a 3D collagen scaffold. Neurol Res 2008;30:207-14.
[77] Stern-Straeter J, Bach AD, Stangenberg L, Foerster VT, Horch RE, Stark GB, et al. Impact of electrical stimulation on three-dimensional myoblast cultures - a real-time RT-PCR study. J Cell Mol Med 2005;9:883-92.
[78] Crew JR, Falzari K, DiMario JX. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation. Exp Cell Res 2010;316:1039-49.
[79] Boonen KJ, van der Schaft DW, Baaijens FP, Post MJ. Interaction between electrical stimulation, protein coating and matrix elasticity: a complex effect on muscle fibre maturation. J Tissue Eng Regen Med 2011;5:60-8.
[80] Yamasaki K, Hayashi H, Nishiyama K, Kobayashi H, Uto S, Kondo H, et al. Control of myotube contraction using electrical pulse stimulation for bio-actuator. J Artif Organs 2009;12:131-7.
[81] Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechology 1996;7:216-23.
[82] Frenot A, Chronakis IS. Polymer nanofibers assembled by electrospinning. Colloid Interface Sci 2003;8:64-75.
[83] Smith JN, Flagan RC, Beauchamp JL. Droplet evaporation and discharge dynamics in electrospray ionization. J Phys Chem A 2002;106:9957-67.
[84] Rayleigh L. On the equilibrium of liquid conducting masses charged with electricity. Phil Mag 1882;14-186:184.
[85] Taylor G. Electrically driven jets. Proc R Soc Lond A 1969;313:453-75.
[86] Xia Y, Diarmid AGM. Camphorsulfonic acid fully doped polyaniline emeraldine salt: in situ observation of electronic and conformational changes induced by organic vapors by an ultraviolet/visible/near-infrared spectroscopic method. Macromolecules 1994;27:7212-4.
[87] Hopkins AR, Rasmussen PG. Characterization of solution and solid state properties of undroped and doped polyanilines processed from hexafluoro-2-propanol. Macromolecules 1996;29:7838-46.
[88] Deitzel JM, Kleinmeyer J, Harris D, Tan NCB. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001;42:261-72.
[89] Norris ID, Shaker MM, Ko FK, MacDiarmid AG. Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends. Synth Met 2000;114:109-14.
[90] Li M, Guo Y, Wei Y, MacDiarmid AG, Lelkes PI. Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 2006;27:2705-15.
[91] Buchkoa CJ, Loui C. Chena, Shena Y, Martin DC. Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer 1999:7397-407.
[92] Xie J, Li X, Xia Y. Putting Electrospun Nanofibers to Work for Biomedical Research. Macromol Rapid Commun 2008;29:1775-92.
[93] He JH, Xu L, Wu Y, Liu Y. Mathematical models for continuous electrospun nanofibers and electrospun nanoporous microspheres. Polym Int 2007;56:1323-9.
[94] Liu S, Xu H, Ou J, Li Z, Yang S, Wang J. A feasible approach to the fabrication of gold/polyaniline nanofiber composites and its application as electrocatalyst for oxygen reduction. Mater Chem Phys 2012;132:500-4.
[95] Abdul Rahman N, Gizdavic-Nikolaidis M, Ray S, Easteal AJ, Travas-Sejdic J. Functional electrospun nanofibres of poly(lactic acid) blends with polyaniline or poly(aniline-co-benzoic acid). Synth Met 2010;160:2015-22.
[96] Table of Raman data and analysis.
[97] Tyrell JR, Terry WH, Christine ES. Synthesis of a novel, biodegradable electrically conducting polymer for biomedical applications**. Adv Funct Mater 2002;12:33-7.
[98] Hu J, Huang L, Zhuang X, Zhang P, Lang L, Chen X, et al. Electroactive aniline pentamer cross-linking chitosan for stimulation growth of electrically sensitive cells. Biomacromolecules 2008;9:2637-44.
[99] Li Y, Neoh KG, Cen L, Kang ET. Porous and electrically conductive polypyrrole-poly(vinyl alcohol) composite and its applications as a biomaterial. Langmuir 2005;21:10702-9.
[100] Guex AG, Kocher FM, Fortunato G, Korner E, Hegemann D, Carrel TP, et al. Fine-tuning of substrate architecture and surface chemistry promotes muscle tissue development. Acta Biomaterialia 2012;8:1481-9.
[101] Huber A, Pickett A, Shakesheff KM. Reconstruction of spatially orientated myotubes in vitro using electrospun, parallel microfibre arrays. Eur Cell Mater 2007;14:56-63.
[102] Chargé SB, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev 2004;84:209-38.
[103] Brevet A, Pinto E. Myosin synthesis increased by electrical stimulation of skeletal muscle cell cultures. Science 1976;193:1152-4.
[104] Pette D, Vrbova G. What does chronic electrical stimulation teach us about muscle plasticity. Muscle Nerve 1999;22:666-77.
[105] Deyne PGD. Formation of sarcomeres in developing myotubes: role of mechanical stretch and contractile activation. Am J Physiol Cell Physiol 2000;279:C1801-11.
[106] Pedrotty DM, Koh J, Davis BH, Taylor DA, Wolf P, Niklason LE. Engineering skeletal myoblasts: roles of three-dimensional culture and electrical stimulation. Am J Physiol Heart Circ Physiol 2005;288:H1620-6.
[107] Sabourin LA, Girgis-Gabardo A, Seale P, Asakura A, Rudnicki MA. Reduced differentiation potential of primary MyoD-/-myogenic cells derived from adult skeletal muscle. J Cell Biol 1999;144:631-43.
校內:2017-09-06公開