簡易檢索 / 詳目顯示

研究生: 梁瑋俊
Liang, Wei-Jun
論文名稱: 鋁鎂合金與熱塑性彈性體之疲勞分析
Fatigue Analysis of Aluminum-Magnesium Alloy and Thermoplastic Elastomer
指導教授: 劉至行
Liu, Chih-Hsing
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 135
中文關鍵詞: 疲勞試驗疲勞壽命有限元素分析AM50鋁鎂合金TPE熱塑性彈性體
外文關鍵詞: AM50 aluminum-magnesium alloy, Fatigue test, Fatigue life, Finite element analysis, thermoplastic elastomer
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要以材料之應力-壽命曲線與應變-壽命曲線進行曲線擬和並進行壽命評估。本研究使用旋轉疲勞試驗機進行AM50鋁鎂合金的疲勞試驗並繪製相對應的S-N疲勞壽命曲線。並對有經二次加工的疲勞試驗數據與未經二次加工的疲勞試驗數據進行比較。經量測表面粗糙度後可得經二次加工之試棒其粗糙度值約為 Ra 0.208μm ,未經二次加工之試棒其表面粗糙度值約為 Ra 0.888μm ,疲勞試驗後得到經二次加工的AM50鋁鎂合金壽命達一百萬次之應力疲勞限為68.74 MPa,未經二次加工的AM50鋁鎂合金壽命達一百萬次之應力疲勞限為57.61 MPa,可推得其表面粗糙度越小其疲勞壽命越高。在材料參數部分,則透過使用單軸拉伸試驗建立AM50鋁鎂合金之楊氏係數、抗拉強度、降伏強度與密度等材料參數,並使用商用有限元素分析軟體LS-DYNA進行拉伸試驗的模擬分析,確認材料參數的準確性。本研究根據ISO 6943規範設計一熱塑性彈性體的單軸拉伸疲勞試驗平台,取得相對應的 ε-N 疲勞曲線。材料參數部分則使用單軸拉伸試驗機測得TPE之抗拉強度、楊氏係數與計算Ogden超彈性體模型參數,並使用商用有限元素分析軟體LS-DYNA進行拉伸試驗的模擬分析,確認材料參數的準確性。後續使用LS-DYNA進行AM50方向盤與TPE撓性夾爪的使用情境模擬,求得方向盤在受到344 N之單點負荷時產生最大等效應力為115.2 MPa,撓性夾爪在推進量為40mm時最大應變為16.58%。取得模擬值後進行壽命評估,方向盤疲勞壽命評估值與試驗值誤差為3.86%,撓性夾爪評估值與試驗值誤差約為4.88%。

    In this study, a rotating fatigue testing machine was used to carry out the fatigue test of AM50 aluminum-magnesium alloy to obtain the S-N fatigue life curves. The surface roughness values of the test samples is about Ra 0.208μm amd Ra 0.888μm, respectively for samples with and without surface machining. In addition, a uniaxial tensile fatigue test platform for thermoplastic elastomer (TPE) was developed to obtain the ε-N fatigue curve. The tensile tests are performed to obtain material parameters of aluminum-magnesium alloy and thermoplastic elastomer. The finite element analysis software LS-DYNA is used to simulate the test conditions of AM50 steering wheel and TPE flexible gripper, the maximum equivalent stress generated by the steering wheel when subjected to a single point load of 344 N is 115.2 MPa and the maximum strain of the flexible gripper is 16.58% when input displacement is 40mm. After obtaining the simulation value, the life evaluation is carried out. The error between the fatigue life evaluation value of the steering wheel and the test value is 3.86%, and the error between the evaluation value and the test value of the flexible gripper is about 4.88%.

    摘要 i ABSTRACT ii 致謝 xv 表目錄 xx 圖目錄 xxii 符號說明 xxviii 第一章 緒論 1 1-1 前言 1 1-2 彈性體材料疲勞與其應用 1 1-2-1 彈性體疲勞文獻回顧 2 1-2-2 彈性體材料之應用 4 1-2-3 熱塑性彈性體材料特性 6 1-3 金屬材料疲勞與其應用 7 1-3-1 金屬材料疲勞文獻回顧 7 1-3-2 金屬材料之應用 8 1-3-3 鋁鎂合金材料特性 10 1-4 研究目的 10 1-5 本文架構 11 第二章 理論方法 13 2-1 前言 13 2-2 疲勞分析 13 2-3 Miner線性累積損傷理論 15 2-4 應力壽命法 16 2-5 平均應力修正法 17 2-6 韋伯分布函數 20 2-7 表面粗糙度 21 2-8 疲勞壽命與表面粗糙度關係 23 第三章 材料參數建立 24 3-1 前言 24 3-2 AM50鋁鎂合金試片與試棒加工 24 3-2-1 AM50拉伸試驗試片加工 25 3-2-2 AM50疲勞試驗試棒加工 27 3-3 拉伸試驗 32 3-3-1 AM50拉伸試驗 33 3-3-2 熱塑性彈性體拉伸試驗 37 3-4 AM50鋁鎂合金密度計算 42 3-5 AM50鋁鎂合金表面粗糙度量測 43 3-6 疲勞試驗 48 3-6-1 AM50鋁鎂合金疲勞試驗 48 3-6-2 熱塑性彈性體疲勞試驗 57 3-7 本章小結 60 第四章 有限元素分析 61 4-1 前言 61 4-2 AM50鋁鎂合金拉伸試驗模擬 62 4-2-1 幾何建立 62 4-2-2 網格建立 63 4-2-3 參數與邊界條件設定 63 4-2-4 網格收斂性分析 65 4-2-5 拉伸試驗結果與模擬分析比較 67 4-3 TPE 拉伸試驗模擬 68 4-3-1 幾何、網格建立與環境條件設定 68 4-3-2 拉伸試驗與模擬分析比較 70 4-4 AM50鋁鎂合金方向盤 70 4-4-1 幾何修整 71 4-4-2 元素修整 73 4-4-3 邊界條件設定 76 4-4-4 參數設定 77 4-4-5 Time Step收斂性分析 79 4-4-6 模擬分析結果 80 4-5 TPE撓性夾爪 81 4-5-1 幾何與三維網格建立 81 4-5-2 參數設定 82 4-5-3 模擬分析結果 86 4-6 本章小結 88 第五章 疲勞壽命評估 89 5-1 前言 89 5-2 AM50鋁鎂合金 89 5-2-1 AM50 S-N曲線與疲勞壽命評估方程式 89 5-2-2 平均應力不為0之疲勞壽命評估 92 5-2-3 韋伯累積損傷機率 95 5-3 TPE撓性夾爪 99 5-3-1 TPE ε-N 曲線與疲勞壽命評估方程式 99 5-3-2 韋伯累積損傷機率 101 5-4 本章小結 103 第六章 方向盤與夾爪疲勞試驗 104 6-1 方向盤耐久試驗 104 6-1-1 試驗配置 104 6-1-2 試驗結果 105 6-1-3 評估值與試驗值比較 106 6-2 夾爪疲勞試驗 106 6-2-1 試驗架設 106 6-2-2 試驗結果 112 6-2-3 評估值與試驗值比較 115 6-3 本章小結 115 第七章 結論與建議 116 7-1 結論 116 7-2 建議 118 參考文獻 119 附錄A HT-2402萬能試驗機操作說明 122 附錄B 旋轉曲屈疲勞試驗機操作說明 131 附錄C TPE疲勞試驗操作說明 133 附錄D TPE夾爪疲勞試驗操作說明 134

    [1] ISO R373:1964 General principles for fatigue testing of metals, International Organization for Standardization,1964.
    [2] S. Cadwell, R. Merrill, C. Sloman, and F. Yost, "Dynamic fatigue life of rubber," Rubber Chemistry and Technology, vol. 13, no. 2, pp. 304-315, 1940.
    [3] W. Kim, H. Lee, J. Kim, and S.-K. Koh, "Fatigue life estimation of an engine rubber mount," International Journal of Fatigue, vol. 26, no. 5, pp. 553-560, 2004.
    [4] J. H. Kim and H. Y. Jeong, "A study on the material properties and fatigue life of natural rubber with different carbon blacks," International Journal of Fatigue, vol. 27, no. 3, pp. 263-272, 2005.
    [5] N. Saintier, G. Cailletaud, and R. Piques, "Multiaxial fatigue life prediction for a natural rubber," International Journal of Fatigue, vol. 28, no. 5-6, pp. 530-539, 2006.
    [6] G. Ayoub, M. Naït-Abdelaziz, F. Zaïri, J. M. Gloaguen, and P. Charrier, "A continuum damage model for the high-cycle fatigue life prediction of styrene-butadiene rubber under multiaxial loading," International Journal of Solids and Structures, vol. 48, no. 18, pp. 2458-2466, 2011.
    [7] Q. Li, J. C. Zhao, and B. Zhao, "Fatigue life prediction of a rubber mount based on test of material properties and finite element analysis," Engineering Failure Analysis, vol. 16, no. 7, pp. 2304-2310, 2009.
    [8] ISO:6943 Rubber, vulcanized — Determination of tension fatigue, International Organization for Standardization,2007.
    [9] GB/T:1688 硫化橡膠 伸張疲勞的測定, 中華人民共和國國家標準,2008.
    [10] SRT公司網頁, http://en.softrobottech.com/.
    [11] FESTO公司網頁, https://www.festo.com/tw/zh/e/about-festo-id_3847/.
    [12] EMPIRE-ROBOTICS公司網頁, https://www.empirerobotics.com/.
    [13] C. H. Liu, F. M. Chung, Y. Chen, C. H. Chiu, and T. L. Chen, "Optimal Design of a Motor-Driven Three-Finger Soft Robotic Gripper," IEEE/ASME Transactions on Mechatronics, vol. 25, no. 4, pp. 1830-1840, 2020.
    [14] 寰宇尖端薄膜有限公司, http://www.film-top1.com/product-info.asp?id=662.
    [15] 超亞塑膠工業有限公司網頁, http://www.supreme-tpe.com/page/allproduct/index.aspx?kind=23.
    [16] 領先顏料色母廠股份有限公司網頁, https://www.botfeeder.com.tw/shop/index.php?route=product/product&path=33_70&product_id=98.
    [17] W. J. M. Rankine, "On the causes of the unexpected breakage of the journals of railway axles;and on the means of preventing such accidents by observing the law of continuity in their construction," Minutes of the Proceedings of the Institution of Civil Engineers, pp. 105-107, 1843.
    [18] M. Horstemeyer, N. Yang, K. Gall, D. McDowell, J. Fan, and P. Gullett, "High cycle fatigue mechanisms in a cast AM60B magnesium alloy," Fatigue & Fracture of Engineering Materials & Structures, vol. 25, no. 11, pp. 1045-1056, 2002.
    [19] H. Mayer, M. Papakyriacou, B. Zettl, and S. Stanzl-Tschegg, "Influence of porosity on the fatigue limit of die cast magnesium and aluminium alloys," International Journal of Fatigue, vol. 25, no. 3, pp. 245-256, 2003.
    [20] F. Braithwaite, "On the fatigue andconsequent fracture of metals," in Minutes of the Proceedings of the Institution of Civil Engineers, 1854, vol. 13, no. 1854: Thomas Telford-ICE Virtual Library, pp. 463-467.
    [21] 武際可, 偉大的實驗與觀察-力學發展的基礎 (CH14 金屬會疲勞). 2018.
    [22] W. Schütz, "A history of fatigue," Engineering Fracture Mechanics, vol. 54, no. 2, pp. 263-300, 1996.
    [23] H. Fuchs, R. Stephens, and H. Saunders, "Metal fatigue in engineering," 1981.
    [24] D. Goodenberger and R. Stephens, "Fatigue of AZ91E-T6 cast magnesium alloy," 1993.
    [25] H. Itoga, K. Tokaji, M. Nakajima, and H. N. Ko, "Effect of surface roughness on step-wise S–N characteristics in high strength steel," International Journal of fatigue, vol. 25, no. 5, pp. 379-385, 2003.
    [26] A. Javidi, U. Rieger, and W. Eichlseder, "The effect of machining on the surface integrity and fatigue life," International Journal of Fatigue, vol. 30, no. 10-11, pp. 2050-2055, 2008.
    [27] W. Xiao, H. Chen, and Y. Yin, "Effects of surface roughness on the fatigue life of alloy steel," Key Engineering Materials, vol. 525, pp. 417-420, 2013.
    [28] P. L. Mao, Z. LIU, C. Y. Wang, and Q. Y. Guo, "Fatigue behavior of magnesium alloy and application in auto steering wheel frame," Transactions of Nonferrous Metals Society of China, vol. 18, pp. 218-222, 2008.
    [29] L. Marsavina, L. Rusu, D. A. Șerban, R. M. Negru, and A. Cernescu, "Fatigue Analysis of Magnesium Alloys Components for Car Industry," Acta Universitatis Cibiniensis. Technical Series, vol. 69, no. 1, pp. 47-51, 2017.
    [30] L. Marsavina, F. Iacoviello, L. D. Pirvulescu, V. Di Cocco, and L. Rusu, "Engineering prediction of fatigue strength for AM50 magnesium alloys," International Journal of Fatigue, vol. 127, pp. 10-15, 2019.
    [31] 宥富企業股份有限公司, https://tw-central.com/blogview.php?id=11.
    [32] 力勁集團網頁, https://www.lk.world/tc/industry_detail.php?id=15.
    [33] 台灣輕金屬協會網頁, http://www.twlma.org.tw/Profile.aspx?pTarget=profile_02.
    [34] K. Kainer and F. Von Buch, "The current state of technology and potential for further development of magnesium applications," Magnesium–alloys and technology, pp. 1-22, 2003.
    [35] 鎂合金行業報告, https://kknews.cc/zh-tw/news/ypverzg.html.
    [36] CNS 4985 金屬材料之疲勞試驗法通則, 中華民國國家標準,2019.
    [37] M. A. Miner, "Cumulative damage in fatigue," Journal of Appl. Mech., vol. 12, pp. A159-A164, 1945.
    [38] R. C. Juvinall and K. M. Marshek, Machine Component Design, 5 ed. Wiley Inc, 2012, pp. 312-371.
    [39] W. Weibull, "A statistical distribution function of wide applicability," Journal of Applied Mechanics, vol. 18, no. 3, pp. 293-297, 1951.
    [40] B. Faucher and W. Tyson, "On the determination of Weibull parameters," Journal of Materials Science Letters, vol. 7, no. 11, pp. 1199-1203, 1988.
    [41] ASTM B94-18 Standard Specification for Magnesium-Alloy Die Castings, American Society for Testing and Materials,2018.
    [42] CNS 2112 金屬拉伸試驗試片, 中華民國國家標準,2017.
    [43] ASTM E505 Standard Reference Radiographs for Inspection of Aluminum and Magnesium Die Castings, American Society for Testing and Materials,2015.
    [44] CNS 7375 金屬材料迴轉彎曲疲勞試驗方法, 中華民國國家標準,2019.
    [45] ASTM E8 : Standard Test Methods for The Tension Testing of Metallic Materials, American Society for Testing and Materials,2016.
    [46] C. H. Liu, Y. Chen, and S. Y. Yang, "Quantification of hyperelastic material parameters for a 3D-Printed thermoplastic elastomer with different infill percentages," Materials Today Communications, vol. 26, p. 101895, 2021.
    [47] CNS3553 硫化或熱塑性橡膠-拉伸應力-應變性質之測定, 中華民國國家標準,2016.
    [48] BotFeeder公司網頁, https://www.botfeeder.com.tw/filastic.htm.
    [49] ISO 4287 Geometrical Product Specifications— Surface texture: Profile method — Terms, definitions and surface texture parameters, International Organization for Standardization,1997.
    [50] Mitutoyo網頁, https://www.mitutoyo.com.tw/index.jsp.

    無法下載圖示 校內:2026-07-22公開
    校外:2026-07-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE