簡易檢索 / 詳目顯示

研究生: 郎子文
Lang, Zi-Wen
論文名稱: 傳輸層與界面工程對 MoS2 / Py 異質結構中自旋電荷轉換效率的影響
Effects of transport layer and interface engineering on spin-charge conversion efficiency in MoS2 / Py heterostructures
指導教授: 黃榮俊
Huang, Jung-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 95
中文關鍵詞: 自旋幫浦自旋電荷轉換MoS2Inverse Rashba-Edelstein effectschottky barrier
外文關鍵詞: Spin pumping, spin-to-charge conversion, MoS2, inverse Rashba-Edelstein effect
相關次數: 點閱:51下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本次實驗我們將在室溫的情況下,探討 MoS2 在自旋幫浦系統中的自旋電荷轉換效率,MoS2 為二維過度金屬硫化物(TMDs),先前也已經被廣泛地用於自旋電子學的討論中,且因為其在結構上有著反演對稱性的缺乏以及過度金屬的 d 軌域所引起的強大的 SOC,使的 Brillouin zone 中Γ 點產生 Rashba spin-splitting 再形成Rashba interface , 而 在 此 特 殊 的 介 面 條 件 中 , 我 們 可 以 利 用 Inverse Rashba-Edelstein effect 來計算得到 MoS2 的自旋電荷轉換效率。我們將比較不同層數 MoS2的自旋電荷轉換效率,我們針對了 1L MoS2 / Py、2L MoS2 / Py 和 3L MoS2 / Py 三組雙層結構進行自旋幫浦研究比較,最終算出自旋電荷轉換效率 Inverse Edelstein length ( ???? ) 分別為2.11 [nm] 、 2.51 [nm] 以及1.54 [nm]。後續還在 1L MoS2 / Py 的界面中插入不同厚度的銅金屬傳輸層,藉此觀察銅金屬傳輸層對於整體樣品的自旋電荷轉換效率的影響,最終發現銅傳輸層能夠使 MoS2 / Py 介面的自旋電荷轉換效率大幅上升,並達到最高 3.27 [nm]。另外,我們還把銅換成氧化鋁作為插入層,藉由調整金屬半導體界面產生的 schottky barrier 來探討其對於 1L MoS2 / Py、2L MoS2 / Py 兩組雙層結構自旋電荷轉換效率的影響,最終算出自旋電荷轉換效率最高可達到分別為2.78 [nm]和2.58 [nm]。

    In this experiment, we will investigate the spin-to-charge conversion efficiency of the transition metal dichalcogenide MoS2 in a spin pumping system at room temperature. MoS2 has been widely discussed in spintronics previously. We use permalloy (Py) as the ferromagnetic layer for ferromagnetic resonance and employ the Inverse Rashba-Edelstein effect to calculate the spin-to-charge conversion efficiency of MoS2. We will compare the spin-to-charge conversion efficiencies of MoS2 with different numbers of layers, focusing on 1L MoS2 / Py, 2L MoS2 / Py, and 3L MoS2 / Py double-layer structures for spin pumping research. Subsequently, we will insert copper metal transfer layers of varying thicknesses into the interface of 1L MoS2 / Py, as well as insert aluminum oxide as a transfer layer into both 1L MoS2 / Py and 2L MoS2 / Py double-layer structures, exploring the effects of these two transfer layers on the overall spin-to-charge conversion efficiency of the samples. Ultimately, we find that both copper and aluminum oxide can enhance the spin-to-charge conversion efficiency at the MoS2 / Py interface.

    摘要 i Abstract ii 誌謝 xi 目錄 xii 圖目錄 xv 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 實驗動機 7 第二章 實驗相關理論介紹 9 2-1. 自旋霍爾效應(Spin Hall effect, SHE) 9 2-2. 反轉自旋霍爾效應(Inverse spin hall effect, ISHE) 10 2-3. Rashba-Edelstein effect(REE) 11 2-4. Inverse Rashba-Edelstein effect(IREE) 13 2-5. 鐵磁共振(Ferromagnetic resonance)與自旋幫浦機制(spin pumping mechanism) 14 第三章 儀器介紹與實驗流程 17 3.1 製程設備介紹 17 3-1-1 離子束濺射(Ion Beam Sputtering, IBS)系統 17 3-1-2 管式高溫爐(Tube Furnace) 20 3-2 實驗流程 21 3-2-1 IBS製程步驟 21 3-2-2 管式高溫爐硫化過程及操作 22 3-2-3 自旋幫浦系統量測與數據分析 23 3-2-3-1 鐵磁共振與自旋幫浦電壓 23 3-2-3-2 原始數據處理 25 3-2-3-3 四點電阻量測(4-points probe method) 30 3-2-3-4 自旋電荷轉換效率計算 31 3-3 分析儀器 33 3-3-1 X射線繞射儀(X-Ray Diffractometer, XRD) 33 3-3-2 微拉曼光譜儀(Micro-Raman Spectrometer) 35 3-3-3 四點電阻量測(4-points probe method) 36 3-3-4 自旋幫浦系統(Spin pumping system) 37 第四章 實驗結果與討論 39 4-1 實驗架構 39 4-2 MoS2薄膜品質確認 41 4-2-1 XRD量測結果與分析 41 4-2-2 Raman量測結果與分析 43 4-3 鎳鐵合金(Ni80Fe20, Py)薄膜飽和磁化量和阻尼係數分析 46 4-4 自旋幫浦量測結果與分析 49 4-4-1鐵磁共振分析與自旋流密度計算 49 4-4-2 自旋幫浦電壓訊號處理 54 4-4-3 1L MoS2、2L MoS2與3L MoS2之自旋轉換效率比較 58 4-4-4 銅金屬傳輸層對MoS2自旋轉換效率之影響 59 4-4-5 氧化鋁傳輸層對MoS2自旋轉換效率之影響 65 第五章 結論 72 參考文獻 73

    1. Bhatti, S., et al., Spintronics based random access memory: a review. Materials Today, 2017. 20(9): p. 530-548.
    2. Saitoh, E., et al., Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Applied Physics Letters, 2006. 88: p. 182509-182509.
    3. Liu, L., et al., Spin-torque switching with the giant spin Hall effect of tantalum. Science, 2012. 336(6081): p. 555-8.
    4. Ast, C.R., et al., Giant spin splitting through surface alloying. Phys Rev Lett, 2007. 98(18): p. 186807.
    5. Mellnik, A.R., et al., Spin-transfer torque generated by a topological insulator. Nature, 2014. 511(7510): p. 449-51.
    6. Rojas-Sánchez, J.C., et al., Spin to Charge Conversion at Room Temperature by Spin Pumping into a New Type of Topological Insulator: α-Sn Films. Physical Review Letters, 2016. 116(9): p. 096602.
    7. Liu, L., et al., Spin-Torque Ferromagnetic Resonance Induced by the Spin Hall Effect. Physical Review Letters, 2011. 106(3): p. 036601.
    8. Vlietstra, N., et al., Simultaneous detection of the spin-Hall magnetoresistance and the spin-Seebeck effect in platinum and tantalum on yttrium iron garnet. Physical Review B, 2014. 90(17): p. 174436.
    9. Oiwa, A., et al., Effect of optical spin injection on ferromagnetically coupled Mn spins in the III-V magnetic alloy semiconductor (Ga,Mn)As. Phys Rev Lett, 2002. 88(13): p. 137202.
    10. Golovynskyi, S., et al., Exciton and trion in few-layer MoS2: Thickness- and temperature-dependent photoluminescence. Applied Surface Science, 2020. 515: p. 146033.
    11. Wang, W., et al.¬, Controllable Schottky Barriers between MoS2 and Permalloy. SCIENTIFIC REPORTS, 2014. 4 : 6928.
    12. Du, C., et al., Enhancement of Pure Spin Currents in Spin Pumping Y3Fe5O12/Cu/metal Trilayers through Spin Conductance Matching. Physical Review Applied, 2014. 1(4): p. 044004.
    13. Shiomi, Y., et al., Spin-electricity conversion induced by spin injection into topological insulators. Phys Rev Lett, 2014. 113(19): p. 196601.
    14. Feng, Y.P., et al., Prospects of spintronics based on 2D materials. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017. 7(5).
    15. Xiao, D., et al., Coupled Spin and Valley Physics in Monolayers of ${mathrm{MoS}}_{2}$ and Other Group-VI Dichalcogenides. Physical Review Letters, 2012. 108(19): p. 196802.
    16. Zhu, Z.Y., Y.C. Cheng, and U. Schwingenschlögl, Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Physical Review B, 2011. 84(15): p. 153402.
    17. Kuc, A. and T. Heine, The electronic structure calculations of two-dimensional transition-metal dichalcogenides in the presence of external electric and magnetic fields. Chem Soc Rev, 2015. 44(9): p. 2603-14.
    18. Cheng, C., et al., Spin to charge conversion in MoS2 monolayer with spin pumping. arXiv preprint arXiv:1510.03451, 2015.
    19. Mendes, J.B.S., et al., Efficient spin to charge current conversion in the 2D semiconductor MoS2 by spin pumping from yttrium iron garnet. Applied Physics Letters, 2018. 112(24).
    20. Hoffmann, A., Spin Hall Effects in Metals. IEEE Transactions on Magnetics, 2013. 49(10): p. 5172-5193.
    21. Takahashi, S. and S. Maekawa, Spin current, spin accumulation and spin Hall effect. Sci Technol Adv Mater, 2008. 9(1): p. 014105.
    22. Hirsch, J.E., Spin Hall Effect. Physical Review Letters, 1999. 83(9): p. 1834-1837.
    23. Guo, G.Y., et al., Intrinsic Spin Hall Effect in Platinum: First-Principles Calculations. Physical Review Letters, 2008. 100(9): p. 096401.
    24. Edelstein, V.M., Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Communications, 1990. 73(3): p. 233-235.
    25. Barman, A. and J. Sinha, Spin Dynamics and Damping in Ferromagnetic Thin Films and Nanostructures. Springer, 2018.
    26. Lesne, E., et al., Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat Mater, 2016. 15(12): p. 1261-1266.
    27. Nakayama, H., et al., Geometry dependence on inverse spin Hall effect induced by spin pumping in Ni${}_{81}$Fe${}_{19}$/Pt films. Physical Review B, 2012. 85(14): p. 144408.
    28. Jamali, M., et al., Giant Spin Pumping and Inverse Spin Hall Effect in the Presence of Surface and Bulk Spin-Orbit Coupling of Topological Insulator Bi2Se3. Nano Lett, 2015. 15(10): p. 7126-32.
    29. Thornton, S.T. and A. Rex, Modern Physics for Scientists and Engineers. 1993.
    30. 微奈米中心. 微拉曼及微光激發螢光光譜儀(含低溫). [cited 2021 12/7]; Available from: https://cmnst.ncku.edu.tw/p/405-1006-147019,c17606.php?Lang=zh-tw.
    31. Pinon, S., et al., Development of a microsystem based on a microfluidic network to tune and reconfigure RF circuits. Journal of Micromechanics and Microengineering, 2012. 22(7).
    32. HQ Graphene. MoS2 (2H Molybdenum Disulfide). [cited 2021 12/4]; Available from: http://www.hqgraphene.com/MoS2.php.
    33. Li, H., et al., From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Advanced Functional Materials, 2012. 22(7): p. 1385-1390.
    34. Bansal, R., et al., Extrinsic spin-orbit coupling induced enhanced spin pumping in few-layer MoS2/Py. Journal of Magnetism and Magnetic Materials, 2019. 476: p. 337-341.
    35. Chamlagain, B., et al., Electrical properties tunability of large area MoS2 thin films by oxygen plasma treatment. Appl. Phys. Lett. 116, 223102 (2020).

    下載圖示 校內:2025-07-01公開
    校外:2025-07-01公開
    QR CODE