簡易檢索 / 詳目顯示

研究生: 張謙靖
Chang, Chien-Ching
論文名稱: 半金屬PdSn2的載子濃度與溫度壓力的依存關係
Temperature and pressure dependence of the carrier density in semimetal PdSn2
指導教授: 黃建龍
Huang, Chien-Lung
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 75
中文關鍵詞: 半金屬磁阻角解析光子激發能譜壓力效應
外文關鍵詞: semimetal, magnetoresistance, ARPES, pressure effect
相關次數: 點閱:62下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇論文主要是透過電傳輸性質來研究PdSn2半金屬系統的物理性質。在有外加磁場的情況下,載子會進行迴旋運動進而造成散射,這即是磁阻的來源。半古典的Kohler’s rule描述了載子在金屬材料中的傳輸與迴旋運動造成的散射相競爭的結果。意外的是PdSn2違反了Kohler’s rule所描述的機制,透過角解析光子激發能譜與能帶計算結果,我們得知PdSn2在溫度低於100 K左右費米面的拓墣性有改變。透過雙能帶模型模擬出靠近費米面的電子與電洞隨溫度之關係,我們發現PdSn2載子濃度大幅下降與遷移速率大幅上升所發生的溫度也是在100 K左右。高壓效應下的磁阻與霍爾效應也是我們感興趣的量測。藉由加壓來改變晶格常數,來對樣品的載子密度的壓力變化有更深的探討。

    This thesis mainly focuses on the physical properties of semimetallic PdSn2 via electrical transport measurements. In the application of magnetic field charge carriers move along the cyclotron orbit and scatter, which is the source of magnetoresistance. A semi-classical Kohler's rule describes that magnetoresistance is proportional to how many cyclotron orbits the charge carrier can make before scattering. Surprisingly, this rule is violated in PdSn2 system. Angle-resolved photoemission (ARPES) measurement and band structure calculation reveal a change of Fermi surface topology below the temperature of 100 K in PdSn2. Via a two-band model, we realize how the density of electron and hole vary as a function of temperature. It turns out the temperature below which the carrier density suddenly decreases and the mobility increases is also around 100 K. We also conduct resistivity and Hall effect measurements under high pressure to study the pressure effect in comparison with the temperature-dependence transport results.

    中文摘要 I Abstract II Acknowledgement III Contents IV List of tables VI List of figures VII 1 Motivation 1 2 Background 5 2.1 Semimetal 5 2.2 Magnetoresistance and Kohler’s rule 8 2.2.1 Magnetoresistance and Hall effect 8 2.2.2 Kohler’s rule 16 3 Experimental method 20 3.1 Sample preparation 20 3.1.1 X-ray refinement 22 3.2 Physical properties measurement system (PPMS) 24 3.2.1 Resistivity measurement 25 3.3 High pressure cell 28 3.4 Angle resolved photoemission spectroscopy 34 4 Data analysis 38 4.1 X-ray powder diffraction refinement 38 4.2 Temperature dependent X-ray powder diffraction 41 4.3 Temperature dependence of resistivity 44 4.3.1 Magnetoresistance 45 4.3.2 Hall effect 47 4.3.3 Violation of Kohler’s rule 47 4.4 Two band model analysis 51 4.5 High pressure measurement 54 4.6 Electronic band structure 57 4.6.1 Angle resolved photoemission spectroscopy (ARPES) 57 4.6.2 First principle calculation 60 5 Discussions and future direction 68 5.1 Discussion 68 5.2 Future works 68 References 70

    [1] V. A. Baheti, P. Kumar, and A. Paul. Growth of phases in the solid-state from room temperature to an elevated temperature in the Pd–Sn and the Pt–Sn systems. Journal of Materials Science: Materials in Electronics, 28:18379–18386, December 2017.
    [2] J. Nyl´en, F. J. Garcıa Garcıa, B. D. Mosel, R. P¨ottgen, and U. H¨aussermann. Structural relationships, phase stability and bonding of compounds PdSnn (n=2, 3, 4). Solid State Sciences, 6(1):147–155, 2004.
    [3] N. H. Jo, Y. Wu, L.-L. Wang, P. P. Orth, S. S. Downing, S. Manni, D. Mou, D. D. Johnson, A. Kaminski, S. Bud’ko, and P. C. Canfield. Extremely large magnetoresistance and Kohler’s rule in P dSn4: A complete study of thermodynamic, transport, and band-structure properties. Phys. Rev. B, 96:165145, October 2017.
    [4] Y. Wu, L.-L. Wang, E. Mun, D. D. Johnson, D. Mou, L. Huang, Y. Lee, S. L. Bud’ko, P. C. Canfield, and A. Kaminski. Dirac node arcs in PtSn4. Nature Physics, 12:667–671, July 2016.
    [5] B. K¨unnen, D. Niepmann, and W. Jeitschko. Structure refinements and some properties of the transition metal stannides Os3Sn7, Ir5Sn7, Ni0.402(4)Pd0.598Sn4, α-PdSn2 and PtSn4. Journal of Alloys and Compounds, 309:1–9, September 2000.
    [6] H. Ehrenreich. Band Structure and Electron Transport of GaAs. Phys. Rev., 120:1951–1963, Dec 1960.
    [7] K. P. O’Donnell and X. Chen. Temperature dependence of semiconductor band gaps. Applied Physics Letters, 58(25):2924–2926, 06 1991.70
    [8] M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava. Large, nonsaturating magnetoresistance in WTe2. Nature, 514:205–208, September 2014.
    [9] S.-Y. Yang, H. Yang, E. Derunova, S. S. P. Parkin, B. Yan, and M. N. Ali. Symmetry demanded topological nodal-line materials. Advances in Physics: X, 3(1):1414631, 2018.
    [10] B. Q. Lv, T. Qian, and H. Ding. Experimental perspective on three-dimensional topological semimetals. Rev. Mod. Phys., 93:025002, April 2021.
    [11] T. Liang, Q. Gibson, M. N. Ali, M.H. Liu, R. J. Cava, and N. P. Ong. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nature Materials, 14:280–284, November 2015.
    [12] Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen. Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi. Science, 343(6173):864– 867, 2014.
    [13] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding. Experimental Discovery of Weyl Semimetal TaAs. Phys. Rev. X, 5:031013, Jul 2015.
    [14] H. Johnston. Weyl fermions are spotted at long last, 2015. https://physicswor ld.com/a/weyl-fermions-are-spotted-at-long-last/. 71
    [15] G. Bian, T.-R. Chang, H. Zheng, S. Velury andS. Y. Xu, T. Neupert, C.-K. Chiu, S.-M. Huang, D. S. Sanchez, I. Belopolski, N. Alidoust, P.-J. Chen, G. Chang, A. Bansil, H.T. Jeng, H. Lin, and M. Z. Hasan. Drumhead surface states and topological nodal-line fermions in TlTaSe2. Phys. Rev. B, 93:121113, Mar 2016.
    [16] Y. Okamoto, K. Saigusa, T. Wada, Y. Yamakawa, A. Yamakage, T. Sasagawa, N. Katayama, H. Takatsu, H. Kageyama, and K. Takenaka. High-mobility carriers induced by chemical doping in the candidate nodal-line semimetal CaAgP. Phys. Rev. B, 102:115101, Sep 2020.
    [17] M.-X. Yang, W. Luo, and W. Chen. Quantum transport in topological nodal-line semimetals. Advances in Physics: X, 7(1):2065216, 2022.
    [18] S. Blundell. Magnetism in condensed matter. Oxford master series in condensed matter physics. Oxford University Press, Oxford, October 2001.
    [19] A. P. Ramirez. Colossal magnetoresistance. Journal of Physics: Condensed Matter, 9:8171, September 1997.
    [20] Y.K. Luo, Y.M. Dai H. Li, Y.G. Shi H. Miao, H. Ding, A.J. Taylor, D.A. Yarotski, R.P. Prasankumar, and J.D. Thompson. Hall effect in the extremely large magnetoresistance semimetal WTe2. Applied Physics Letters, 107(18):182411, November 2015.
    [21] Y.J. Wang, L.Z. Wang, X.W. Liu, H. Wu, P.F. Wang, D.Y. Yan, B. Cheng, Y.G. Shi, K. Watanabe, T. Taniguchi, S.-J. Liang, and F. Miao. Direct evidence for charge compensation-induced large magnetoresistance in thin WTe2. Nano Letters, 19(6):3969–3975, May 2019. PMID: 31082263.72
    [22] I. Vishik. How can I recognize a holonic vs an electronic band from the Fermi surface of a metal?, 2017. https://www.quora.com/How-can-I-recognize-aholonic-vs-an-electronic-band-from-the-Fermi-surface-of-a-metal.
    [23] J.M. Ziman. Electrons and Phonons: The Theory of Transport Phenomena in Solids. Oxford University Press, February 2001.
    [24] N. Luo and G.H. Miley. Kohler’s rule and relaxation rates in high-Tc superconductors. Physica C: Superconductivity, 371(4):259–269, July 2002.
    [25] Y. J. Hu, E. I. Paredes Aulestia, K. F. Tse, C. N. Kuo, J.Y. Zhu, C.S. Lue,
    K.T. Lai, and S. K. Goh. Extremely large magnetoresistance and the complete determination of the Fermi surface topology in the semimetal ScSb. Phys. Rev. B, 98:035133, July 2018.
    [26] P. C. Canfield and Z. Fisk. Growth of single crystals from metallic fluxes. Philosophical Magazine B, 65(6):1117–1123, December 1992.
    [27] Bruker Technologies Ltd. D2 PHASER. https://www.bruker.com/zh/products-and-solutions/diffractometers-and-x-ray-microscopes/x-ray-diffractometers/d2-phaser.html.
    [28] K.S. Ajay, C. Ganesha, P. Tejas, K.V. Gangadharan, and D. Vijaylakshmi. Automated low-temperature resistivity measurement setup: Design and fabrication. Materials Today: Proceedings, 47:1670–1675, 2021. National Conference on Recent Advances in Functional Materials-2020.
    [29] C. Narayana V. Rajaji, F. J. Manj´on. Pressure induced topological and topological crystalline insulators. IOPScience, 2022.73
    [30] C.A.SWENSON L.D.JENNINGS. Effects of Pressure on the Superconducting Transition Temperatures of Sn, In, Ta, Tl, and Hg. Physic Review, 1958.
    [31] IOP. Stories from Physics: quantum, nuclear and particle physics.
    https://spark.iop.org/collections/stories-physics-quantum-nuclea
    r-and-particle-physics.
    [32] Logo specs group. Learned about ARPES. https://www.specs-group.com/nc/specsgroup/knowledge/methods/detail/arpes/.
    [33] A. A. Coelho. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. Journal of Applied Crystallography, 51(1):210–218, Feb 2018.
    [34] A. A. Abrikosov. Quantum magnetoresistance. Phys. Rev. B, 58:2788–2794, Aug
    1998.
    [35] M. M. Parish and P. B. Littlewood. Non-saturating magnetoresistance in heavily disordered semiconductors. Nature, 426:162–165, November 2003.
    [36] P. Cheng, H.Yang, Y. Jia, L. Fang, X.Y. Zhu, G. Mu, and H.-H. Wen. Hall effect and magnetoresistance in single crystals of NdFeAsO1−xFx (x=0 and 0.18). Phys.Rev. B, 78:134508, October 2008.
    [37] S. Nair, S. Wirth, M. Nicklas, J. L. Sarrao, J. D. Thompson, Z. Fisk, and F. Steglich. Precursor State to Unconventional Superconductivity in CeIrIn5. Phys.Rev. Lett., 100:137003, April 2008.
    [38] R. H. McKenzie, J. S. Qualls, S. Y. Han, and J. S. Brooks. Violation of Kohler's rule by the magnetoresistance of a quasi-two-dimensional organic metal. Phys.Rev. B, 57:11854–11857, May 1998.
    [39] T. Kimura, S. Miyasaka, H. Takagi, K. Tamasaku, H. Eisaki, S. Uchida, K. Kitazawa, M. Hiroi, M. Sera, and N. Kobayashi. In-plane and out-of-plane magnetoresistance in La2−xSrxCuO4 single crystals. Phys. Rev. B, 53:8733–8742, April 1996.
    [40] J. M. Harris, Y. F. Yan, P. Matl, N. P. Ong, P. W. Anderson, T. Kimura, and K. Kitazawa. Violation of Kohler’s Rule in the Normal-State Magnetoresistance of YBa2Cu3O7−δ and La2SrxCuO4. Phys. Rev. Lett., 75:1391–1394, August 1995.
    [41] A. Wang, D. Graf, Y. Liu, Q. Du, J. Zheng Jiabao, H. Lei, and C. Petrovic. Large magnetoresistance in the type-II Weyl semimetal WP2. Phys. Rev. B, 96:121107, September 2017.
    [42] Y. Wu, N. H. Jo, M. Ochi, L.N. Huang, D.X. Mou, S. L. Bud’ko, P.C. Canfield, N. Trivedi, R. Arita, and A. Kaminski. Temperature-Induced Lifshitz Transition in WTe2. Phys. Rev. Lett., 115:166602, October 2015.
    [43] C. Shekhar, A.K. Nayak, Y. Sun, M. Schmidt, M. Nicklas, I. Leermakers, U. Zeitler, Y. Skourski, J. Wosnitza, Z. Liu, Y. Chen, W. Schnelle, H. Borrmann, Y. Grin, C. Felser, and B. Yan. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. Nature Physics,11:645–649, March 2015.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE