| 研究生: |
吳明陽 Wu, Ming-Yang |
|---|---|
| 論文名稱: |
陰道鞭毛蟲不同異構型紅素氧還蛋白於營養與代謝緊迫的表現 The different isoforms of rubrerythrin express under glucose and iron stresses in Trichomonas vaginalis |
| 指導教授: |
辛致煒
Shin, Jyh-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2016 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 陰道鞭毛蟲 、月經週期 、紅素氧還蛋白 、硫氧還蛋白過氧化物酶 |
| 外文關鍵詞: | Trichomonas vaginalis, Rubrerythrin, Thioredoxin peroxidase, glucose, iron |
| 相關次數: | 點閱:98 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
陰道鞭毛蟲 (Trichomonas vaginalis) 為厭氧的寄生性原蟲,人類是唯一宿主,寄生於女性的陰道及男性的前列腺等。寄生於陰道的陰道鞭毛蟲必須經歷女性經期前後的環境劇烈改變 (例如:葡萄糖、鐵離子、酸鹼值…);環境條件的改變會造成陰道鞭毛蟲必須面對生長、代謝及氧化的壓力,所以陰道鞭毛蟲會演化出適應特定環境壓力的基因,做出適應性的反應,幫助蟲體存活。先前研究已知陰道鞭毛蟲具有紅素氧還蛋白 (rubrerythrin) 和硫氧還蛋白過氧化物酶 (thioredoxin peroxidase) 這兩種蛋白可以幫助陰道鞭毛蟲克服葡萄糖和鐵離子的逆境,加上陰道鞭毛蟲基因體解碼後,得知此兩種蛋白都具有多種異構型存在。本研究使用不同葡萄糖濃度及鐵離子濃度模擬月經週期環境的變化,觀察這些異構型的基因表現量是否會因葡萄糖濃度和鐵離子濃度改變而變化。結果顯示紅素氧還蛋白異構型TVAG_064490和TVAG_275660會分別在高葡萄糖和高鐵離子條件下,誘導出高表現量。硫氧還蛋白過氧化物酶異構型TVAG_114310則會在低鐵離子條件下,誘導出高表現量。更進一步,我們發現培養液中葡萄糖與鐵離子的濃度分別對紅素氧還蛋白TVAG_064490和TVAG_275660的表現量具有正向調控的關係,硫氧還蛋白過氧化物酶異構型TVAG_114310則受鐵離子濃度的負向調控。並從中我們發現TVAG_275660和TVAG_114310這兩個基因可能存在轉換調節的關係,證明紅素氧還蛋白和硫氧還蛋白過氧化物酶確實在調控同一反應時會互相調節。相信本研究結果能更了解紅素氧還蛋白和硫氧還蛋白過氧化物酶幫助陰道鞭毛蟲克服陰道環境葡萄糖和鐵的條件改變。
There are many different stresses in the environment, which cause cell damage, affect cell development, and even cause survival crisis. To prevent from these stresses, cell can produce anti-stress proteins to respond to these stresses. Trichomonas vaginalis is an anaerobic parasitic protozoan, which causes trichomoniasis, a sexually transmitted disease. The most common infection site is in the vagina of women. Different phase of menstrual cycle changes nutrition in the vagina, especially glucose and iron. Base on the observation in clinical, glucose and hemoglobin are two major factors affect T. vaginalis growth. Rubrerythrin, also called RBR, a non-haem iron binding protein in hydrogenosomes, is a stress responded protein in T. vaginalis, which have five different isoforms in ATCC 30236 strain. Thioredoxin peroxidase, also called TrxP, is a class of small redox proteins in hydrogenosomes, is a stress responded protein in T. vaginalis, which have three different isoforms in ATCC 30236 strain. In this study, we find RBR isoform RBR06 had a significantly increased in glucose supplement condition and isoform RBR27 had a significantly increased in high iron concentration. Therefore, the result indicated RBR06 gene expression is associated with glucose concentration and RBR27 gene expression is associated with iron concentration. We also find TrxP isoform TrxP11 had a significantly decreased in high iron concentration and TrxP11 remain high expression level in other conditions. Thus, we determine TrxP11 is a housekeeping gene and RBR isoforms are anti-stress gene that response to glucose and iron concentration changed. Futhermore, TrxP11 and RBR27 showed switch regulation when iron concentration changed. In conclusion, RBR and TrxP help T. vaginalis adapt different glucose and iron environment.
1.Anonymous. (1957). Trichomonas infections. Lancet, 1239-1240.
2.Al-Salihi, F. L., Curran, J. P., & Wang, J. S. (1974). Neonatal Trichomonas Vaginalis report of three cases and review of the literature. Pediatrics, 53(2), 196-200.
3.Arroyo, R., González‐Robles, A., Martínez‐Palomo, A., & Alderete, J. F. (1993). Signalling of Trichomonas vaginalis for amoeboid transformation and adhesin synthesis follows cytoadherence. Molecular Microbiology, 7(2), 299-309.
4.Alderete, J. F., Provenzano, D., & Lehker, M. W. (1995). Iron mediates Trichomonas vaginalis resistance to complement lysis. Microbial Pathogenesis,19(2), 93-103.
5.Ancerewicz, J., Migliavacca, E., Carrupt, P. A., Testa, B., Brée, F., Zini, R. & Crevat, A. (1998). Structure–property relationships of trimetazidine derivatives and model compounds as potential antioxidants. Free Radical Biology and Medicine, 25(1), 113-120.
6.Arnér, E. S., & Holmgren, A. (2000). Physiological functions of thioredoxin and thioredoxin reductase. European Journal of Biochemistry, 267(20), 6102-6109.
7.Alderete, J. F., Nguyen, J., Mundodi, V., & Lehker, M. W. (2004). Heme-iron increases levels of AP65-mediated adherence by Trichomonas vaginalis. Microbial Pathogenesis, 36(5), 263-271.
8.Abrahamsen, M. S., Templeton, T. J., Enomoto, S., Abrahante, J. E., Zhu, G., Lancto, C. A. & Buck, G. A. (2004). Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science, 304(5669), 441-445.
9.Ali, V., Shigeta, Y., Tokumoto, U., Takahashi, Y., & Nozaki, T. (2004). An intestinal parasitic protist, Entamoeba histolytica, possesses a non-redundant nitrogen fixation-like system for iron-sulfur cluster assembly under anaerobic conditions. Journal of Biological Chemistry, 279(16), 16863-16874.
10.Brown, M. T. (1972). Trichomoniasis. Practitioner, 209(253), 639-644.
11.Bui, E. T., & Johnson, P. J. (1996). Identification and characterization of [Fe]-hydrogenases in the hydrogenosome of Trichomonas vaginalis. Molecular and Biochemical Parasitology, 76(1), 305-310.
12.Bonomi, F., Kurtz Jr, D. M., & Cui, X. (1996). Ferroxidase activity of recombinant Desulfovibrio vulgaris rubrerythrin. Journal of Biological Inorganic Chemistry, 1(1) 67-72
13.Beinert, H., Holm, R. H., & Münck, E. (1997). Iron-sulfur clusters: nature's modular, multipurpose structures. Science, 277(5326), 653-659.
14.Boxma, B., de Graaf, R. M., van der Staay, G. W., van Alen, T. A., Ricard, G., Gabaldón, T. & Tielens, A. G. (2005). An anaerobic mitochondrion that produces hydrogen. Nature, 434(7029), 74-79.
15.Benchimol, M. (2008). The hydrogenosome as a drug target. Current pharmaceutical design, 14(9), 872-881.
16.Burtner, C. R., Murakami, C. J., Kennedy, B. K., & Kaeberlein, M. (2009). A molecular mechanism of chronological aging in yeast. Cell cycle, 8(8), 1256-1270.
17.Bennal, A. S., & Kerure, S. B. (2013). Glucose handling during menstrual cycle. International Journal of Reproduction, Contraception, Obstetrics and Gynecology, 2(3), 284-287.
18.Beltrán, N. C., Horváthová, L., Jedelský, P. L., Šedinová, M., Rada, P., Marcinčiková, M. & Tachezy, J. (2013). Iron-induced changes in the proteome of Trichomonas vaginalis hydrogenosomes. PloS one, 8(5), e65148.
19.Catterall, R. D. (1972). Trichomonal infections of the genital tract. The Medical clinics of North America, 56(5), 1203-1209.
20.Cross, C. E., Halliwell, B., Borish, E. T., Pryor, W. A., Ames, B. N., Saul, R. L. & Harman, D. (1987). Oxygen radicals and human disease. Annals of internal medicine, 107(4), 526-545.
21.Cotch, M. F., & Prematurity Study Group. (1990). Carriage of Trichomonas vaginalis is associated with adverse pregnancy outcome. In Program Abstr. 30th Intersci. Conf Antimicrob Agents Chemother Abstr (Vol. 681).
22.Cotch, M. F., Joseph G Pastorek, I. I., Nugent, R. P., Hillier, S. L., Gibbs, R. S., Martin, D. H. & Krohn, M. A. (1997). Trichomonas vaginalis associated with low birth weight and preterm delivery. Sexually Transmitted Diseases, 24(6), 353-360.
23.Coulter, E. D., Shenvi, N. V., & Kurtz, D. M. (1999). NADH peroxidase activity of rubrerythrin. Biochemical and Biophysical Research Communications, 255(2), 317-323.
24.Coulter, E. D., Shenvi, N. V., Beharry, Z. M., Smith, J. J., Prickril, B. C., & Kurtz, D. M. (2000). Rubrerythrin-catalyzed substrate oxidation by dioxygen and hydrogen peroxide. Inorganica Chimica Acta, 297(1), 231-241.
25.Carr, A. C., McCall, M. R., & Frei, B. (2000). Oxidation of LDL by myeloperoxidase and reactive nitrogen species reaction pathways and antioxidant protection. Arteriosclerosis, Thrombosis, and Vascular Biology, 20(7), 1716-1723.
26.Coulter, E. D., & Kurtz, D. M. (2001). A role for rubredoxin in oxidative stress protection in Desulfovibrio vulgaris: catalytic electron transfer to rubrerythrin and two-iron superoxide reductase. Archives of Biochemistry and Biophysics, 394(1), 76-86.
27.Coombs, G. H., Westrop, G. D., Suchan, P., Puzova, G., Hirt, R. P., Embley, T. M. & Müller, S. (2004). The amitochondriate eukaryote Trichomonas vaginalis contains a divergent thioredoxin-linked peroxiredoxin antioxidant system. Journal of Biological Chemistry, 279(7), 5249-5256.
28.Chan, K. W., Slotboom, D. J., Cox, S., Embley, T. M., Fabre, O., Van Der Giezen, M. & Tovar, J. (2005). A novel ADP/ATP transporter in the mitosome of the microaerophilic human parasite Entamoeba histolytica. Current Biology, 15(8), 737-742.
29.Carlton, J. M., Hirt, R. P., Silva, J. C., Delcher, A. L., Schatz, M., Zhao, Q. & Sicheritz-Ponten, T. (2007). Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science, 315(5809), 207-212.
30.Chang, Wei-Ting. (2009). The study of cytopathogenesis by Trichomonas vaginalis in vitro. 國立成功大學微免所碩士論文.
31.Chou, Chung-Chen. (2013). Role of rubrerythrin in the environmental stress response of Trichomonas vaginalis. 國立成功大學微免所碩士論文.
32.Cheng, W. H., Huang, K. Y., Huang, P. J., Hsu, J. H., Fang, Y. K., Chiu, C. H., & Tang, P. (2015). Nitric oxide maintains cell survival of Trichomonas vaginalis upon iron depletion. Parasites & Vectors (2015) 8:393
33.Donné, M. A. (1836). Animacules observes dans les matieres purulentes et le produit des secretions des organes genitaux de l’homme et de la femme.CR Acad Sci, 3(385), e6.
34.Durel, P., Roiron, V., Siboulet, A., & Borel, L. J. (1960). Systemic treatment of trichomoniasis with a derivative of nitro-imidazole, 8823 RP. British Journal of Venereal Diseases, 36(1), 21.
35.Diamond, L. S. (1986). In vitro cultivation of the Trichomonadidae: a state of the art review. Acta Univ Carol Biol, 30(30), 221-228.
36.Demes, P., Gombosova, A., Valent, M., Janoska, A., Fabusova, H., & Petrenko, M. (1988a). Differential susceptibility of fresh Trichomonas vaginalis isolates to complement in menstrual blood and cervical mucus. Genitourinary medicine, 64(3), 176-179.
37.Demes, P., Gombosova, A., Valent, M., Fabusova, H., & Janoska, A. (1988b). Fewer Trichomonas vaginalis organisms in vaginas of infected women during menstruation. Genitourinary medicine, 64(1), 22-24.
38.Dyall, S. D., Koehler, C. M., Delgadillo-Correa, M. G., Bradley, P. J., Plümper, E., Leuenberger, D., ... & Johnson, P. J. (2000). Presence of a member of the mitochondrial carrier family in hydrogenosomes: conservation of membrane-targeting pathways between hydrogenosomes and mitochondria. Molecular and Cellular Biology, 20(7), 2488-2497.
39.Devasagayam, T. P. A., Tilak, J. C., Boloor, K. K., Sane, K. S., Ghaskadbi, S. S., & Lele, R. D. (2004). Free radicals and antioxidants in human health: current status and future prospects. Japi, 52(794804), 4.
40.Dolezal, P., Smíd, O., Rada, P., Zubácová, Z., Bursać, D., Suták, R., ... & Tachezy, J. (2005). Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proceedings of the National Academy of Sciences of the United States of America, 102(31), 10924-10929.
41.Danovaro, R., Dell'Anno, A., Pusceddu, A., Gambi, C., Heiner, I., & Kristensen, R. M. (2010). The first metazoa living in permanently anoxic conditions. BMC biology, 8(1), 1.
42.Ehrenberg, C. G. (1838). Die Infusionsthierchen als vollkommene Organismen: ein Blick in das tiefere organische Leben der Natur. L. Voss.
43.Ellis, J. E., Yarlett, N., Cole, D., Humphreys, M. J., & Lloyd, D. (1994). Antioxidant defences in the microaerophilic protozoan Trichomonas vaginalis: comparison of metronidazole-resistant and sensitive strains. Microbiology, 140(9), 2489-2494.
44.Eklund, H., Uhlin, U., Färnegårdh, M., Logan, D. T., & Nordlund, P. (2001). Structure and function of the radical enzyme ribonucleotide reductase. Progress in Biophysics and Molecular Biology, 77(3), 177-268.
45.Embley, T. M., & Martin, W. (2006). Eukaryotic evolution, changes and challenges. Nature, 440(7084), 623-630.
46.Fleetwood, L., Landgren, B. M., & Eneroth, P. (1984). Changes in soluble proteins in cervical mucus during midcycle in normally menstruating women. Gynecologic and Obstetric Investigation, 18(1), 27-33.
47.Fontecave, M., Lepoivre, M., Elleingand, E., Gerez, C., & Guittet, O. (1998). Resveratrol, a remarkable inhibitor of ribonucleotide reductase. FEBS letters, 421(3), 277-279.
48.Fabrizio, P., & Longo, V. D. (2003). The chronological life span of Saccharomyces cerevisiae. Aging Cell, 2(2), 73-81.
49.Fu, Tshiau-Yu. (2008). Rubrerythrin, a non-haem binding protein, expresses in Trichomonas vaginalis in vitro. 國立成功大學微免所碩士論文.
50.Fontana, L., Partridge, L., & Longo, V. D. (2010). Extending healthy life span—from yeast to humans. Science, 328(5976), 321-326.
51.Ferretti, A. C., Larocca, M. C., & Favre, C. (2012). Nutritional stress in eukaryotic cells: oxidative species and regulation of survival in time of scarceness. Molecular Genetics and Metabolism, 105(2), 186-192.
52.Fang, Y. K., Huang, K. Y., Huang, P. J., Lin, R., Chao, M., & Tang, P. (2015). Gene-expression analysis of cold-stress response in the sexually transmitted protist Trichomonas vaginalis. Journal of Microbiology, Immunology and Infection, 48(6), 662-675.
53.Gorrell, T. E. (1985). Effect of culture medium iron content on the biochemical composition and metabolism of Trichomonas vaginalis. Journal of Bacteriology,161(3), 1228-1230.
54.Garcia, A. F., Chang, T. H., Benchimol, M., Klumpp, D. J., Lehker, M. W., & Alderete, J. F. (2003). Iron and contact with host cells induce expression of adhesins on surface of Trichomonas vaginalis. Molecular Microbiology, 47(5), 1207-1224.
55.Gray, M. W., Lang, B. F., & Burger, G. (2004). Mitochondria of protists. Annual. Review of Genetics., 38, 477-524.
56.Gabaldón, T., Snel, B., Van Zimmeren, F., Hemrika, W., Tabak, H., & Huynen, M. A. (2006). Origin and evolution of the peroxisomal proteome. Biology Direct,1 (1), 1.
57.Honigberg, B. M., & King, V. M. (1964). Structure of Trichomonas vaginalis Donne. The Journal of Parasitology, 345-364.
58.Heath, J. P. (1981). Behaviour and pathogenicity of Trichomonas vaginalis in epithelial cell cultures: a study by light and scanning electron microscopy. The British Journal of Venereal Diseases, 57(2), 106-117.
59.Holmgren, A. (1989). Thioredoxin and glutaredoxin systems. Journal of Biological Chemistry, 264(24), 13963-13966.
60.Hrdy, I., Hirt, R. P., Dolezal, P., Bardonová, L., Foster, P. G., Tachezy, J., & Embley, T. M. (2004). Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature, 432(7017), 618-622.
61.Harp, D. F., & Chowdhury, I. (2011). Trichomoniasis: evaluation to execution. European Journal of Obstetrics & Gynecology and Reproductive Biology, 157(1), 3-9.
62.Horváthová, L., Šafaříková, L., Basler, M., Hrdý, I., Campo, N. B., Shin, J. W. & Tachezy, J. (2012). Transcriptomic identification of iron-regulated and iron-independent gene copies within the heavily duplicated Trichomonas vaginalis genome. Genome Biology and Evolution, 4(10), 1017-1029.
63.Huang, K. Y., Huang, P. J., Ku, F. M., Lin, R., Alderete, J. F., & Tang, P. (2012). Comparative transcriptomic and proteomic analyses of Trichomonas vaginalis following adherence to fibronectin. Infection and immunity, 80(11), 3900-3911.
64.Huang, K. Y., Chen, Y. Y. M., Fang, Y. K., Cheng, W. H., Cheng, C. C., Chen, Y. C., & Tang, P. (2014). Adaptive responses to glucose restriction enhance cell survival, antioxidant capability, and autophagy of the protozoan parasite Trichomonas vaginalis. Biochimica et Biophysica Acta (BBA)-General Subjects, 1840(1), 53-64.
65.Inoue, Y., & Klionsky, D. J. Regulation of macroautophagy in Saccharomyces cerevisiae. In Seminars in Cell & Developmental Biology (2010); 21(7):664-70.
66.Johnson, S. R., Petzold, C. R., & Galask, R. P. (1985). Qualitative and quantitative changes of the vaginal microbial flora during the menstrual cycle. American Journal of Reproductive Immunology and Microbiology, 9(1), 1-5.
67.Kurnatowska, A. (1958). Quantitative changes of Trichomonas vaginalis Donne during menstrual cycle. Wiadomości Parazytologiczne, 4(5-6), 549.
68.Kitchener, K. R., Meshnick, S. R., Fairfield, A. S., & Wang, C. C. (1984). An iron-containing superoxide dismutase in Tritrichomonas foetus. Molecular and Biochemical Parasitology, 12(1), 95-99.
69.Kim, Insun, Elizabeth A. Yetley, and Mona S. Calvo. "Variations in iron-status measures during the menstrual cycle." The American Journal of Clinical Nutrition 58.5 (1993): 705-709.
70.Krieger, J. N. (1995). Trichomoniasis in men: old issues and new data. Sexually Transmitted Diseases, 22(2), 83-96.
71.Katinka, M. D., Duprat, S., Cornillot, E., Méténier, G., Thomarat, F., Prensier, G. & Delbac, F. (2001). Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature, 414(6862), 450-453.
72.Kaeberlein, M., Powers, R. W., Steffen, K. K., Westman, E. A., Hu, D., Dang, N. & Kennedy, B. K. (2005). Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science, 310(5751), 1193-1196.
73.Kim, Y. S., Song, H. O., Choi, I. H., Park, S. J., & Ryu, J. S. (2006). Hydrogenosomal activity of Trichomonas vaginalis cultivated under different iron conditions. The Korean journal of parasitology, 44(4), 373-378.
74.Karnkowska, A., Vacek, V., Zubáčová, Z., Treitli, S. C., Petrželková, R., Eme, L., & Soukal, P. (2016). A eukaryote without a mitochondrial organelle. Current Biology, 26(10), 1274-1284.
75.Lindmark, D. G., & Müller, M. (1973). Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. Journal of Biological Chemistry, 248(22), 7724-7728.
76.Lindmark, D. G., & Müller, M. (1974). Superoxide dismutase in the anaerobic flagellates, Tritrichomonas foetus and Monocercomonas sp. Journal of Biological Chemistry, 249(14), 4634-4637.
77.Lindmark, D. G., Müller, M., & Shio, H. (1975). Hydrogenosomes in Trichomonas vaginalis. The Journal of Parasitology, 61(3), 552-554.
78.Landgren, B. M., Ljung-Wadström, A., Wikborn, C., Eneroth, P., & Nord, C. E. (1984). Microbial findings in genital secretions from seven healthy fertile couples. Medical Microbiology and Immunology, 173(4), 179-185.
79.LeGall, J., Prickril, B. C., Moura, I., Xavier, A. V., Moura, J. J., & Hanh, H. B. (1988). Isolation and characterization of rubrerythrin, a non-heme iron protein from Desulfovibrio vulgaris that contains rubredoxin centers and a hemerythrin-like binuclear iron cluster. Biochemistry, 27(5), 1636-1642.
80.Liu, M. Y., & Le Gall, J. (1990). Purification and characterization of two proteins with inorganic pyrophosphatase activity from Desulfovibrio vulgaris: Rubrerythrin and a new, highly active, enzyme. Biochemical and Biophysical Research Communications, 171(1), 313-318.
81.Lehker, M. W., Chang, T. H., Dailey, D. C., & Alderete, J. F. (1990). Specific erythrocyte binding is an additional nutrient acquisition system for Trichomonas vaginalis. The Journal of Experimental Medicine, 171(6), 2165-2170.
82.Lehker, M. W., Arroyo, R., & Alderete, J. F. (1991). The regulation by iron of the synthesis of adhesins and cytoadherence levels in the protozoan Trichomonas vaginalis. The Journal of Experimental Medicine, 174(2), 311-318.
83.Lehker, M. W., & Alderete, J. F. (1992). Iron regulates growth of Trichomonas vaginalis and the expression of immunogenic trichomonad proteins. Molecular Microbiology, 6(1), 123-132.
84.Lehmann, Y., Meile, L., & Teuber, M. (1996). Rubrerythrin from Clostridium perfringens: cloning of the gene, purification of the protein, and characterization of its superoxide dismutase function. Journal of Bacteriology, 178(24), 7152-7158.
85.Lu, W., Egerton, G. L., Bianco, A. E., & Williams, S. A. (1998). Thioredoxin peroxidase from Onchocerca volvulus: a major hydrogen peroxide detoxifying enzyme in filarial parasites. Molecular and Biochemical Parasitology, 91(2), 221-235.
86.Liu, Y., Fiskum, G., & Schubert, D. (2002). Generation of reactive oxygen species by the mitochondrial electron transport chain. Journal of Neurochemistry, 80(5), 780-787.
87.Lill, R., & Mühlenhoff, U. (2005). Iron–sulfur-protein biogenesis in eukaryotes. Trends in Biochemical Sciences, 30(3), 133-141.
88.Mereschkowsky, C. (1910). Theorie der zwei plasmaarten als grundlage der symbiogenesis, einer neuen lehre von der entstehung der organismen. Biol. Centralbl, 30, 278-288.
89.Marczak, R., Gorrell, T. E., & Müller, M. (1983). Hydrogenosomal ferredoxin of the anaerobic protozoon, Tritrichomonas foetus. Journal of Biological Chemistry, 258 (20), 12427-12433.
90.Minkoff, H., Grunebaum, A. N., Schwarz, R. H., Feldman, J., Cummings, M., Crombleholme, W. & McCormack, W. M. (1984). Risk factors for prematurity and premature rupture of membranes: a prospective study of the vaginal flora in pregnancy. American Journal of Obstetrics and Gynecology, 150(8), 965-972.
91.Müller, M. (1988) Energy metabolism of protozoa without mitochondria. Annual Review of Microbiology. 42:465–488.
92.Müller, M. (1992) Energy metabolism of ancestral eukaryotes: hypothesis based on the biochemistry of amitochondriate parasitic protists. Chinese Medical Journal. 28:33–40.
93.deMaré, F, Kurtz, D. M., & Nordlund, P. (1996). The structure of Desulfovibrio vulgaris rubrerythrin reveals a unique combination of rubredoxin-like FeS4 and ferritin-like diiron domains. Nature Structural & Molecular Biology, 3(6), 539-546.
94.Mustacich, D., & Powis, G. (2000). Thioredoxin reductase. Biochemical Journal, 346(1), 1-8.
95.Moodley, P., Wilkinson, D., Connolly, C., Moodley, J., & Sturm, A. W. (2002). Trichomonas vaginalis is associated with pelvic inflammatory disease in women infected with human immunodeficiency virus. Clinical Infectious Diseases, 34(4), 519-522.
96.Müller, M. (2003). Molecular medical parasitology.
97.McClelland, R. S., Sangaré, L., Hassan, W. M., Lavreys, L., Mandaliya, K., Kiarie, J. & Baeten, J. M. (2007). Infection with Trichomonas vaginalis increases the risk of HIV-1 acquisition. Journal of Infectious Diseases,195(5), 698-702.
98.McClelland, R. S. (2008). Trichomonas vaginalis infection: can we afford to do nothing?. Journal of Infectious Diseases, 197(4), 487-489.
99.Mallo, N., Lamas, J., & Leiro, J. M. (2013). Hydrogenosome metabolism is the key target for antiparasitic activity of resveratrol against Trichomonas vaginalis. Antimicrobial Agents and Chemotherapy, 57(6), 2476-2484.
100.Nordberg, J., & Arner, E. S. (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radical Biology and Medicine, 31(11), 1287-1312.
101.Ohnishi, Tomoko, & Salerno, J. C. (1982). Iron-sulfur clusters in the mitochondrial electron-transport chain. Iron-Sulfur Proteins, 4, 285-327.
102.Peterson, K. M., & Alderete, J. F. (1984). Iron uptake and increased intracellular enzyme activity follow host lactoferrin binding by Trichomonas vaginalis receptors. The Journal of Experimental Medicine, 160(2), 398-410.
103.Paget, T. A., & Lloyd, D. (1990). Trichomonas vaginalis requires traces of oxygen and high concentrations of carbon dioxide for optimal growth. Molecular and Biochemical Parasitology, 41(1), 65-72.
104.Prickril, B. C., Kurtz Jr, D. M., LeGall, J., & Voordouw, G. (1991). Cloning and sequencing of the gene for rubrerythrin from Desulfovibrio vulgaris. Biochemistry, 30(46), 11118-11123.
105.Petrin, D., Delgaty, K., Bhatt, R., & Garber, G. (1998). Clinical and microbiological aspects of Trichomonas vaginalis. Clinical Microbiology Reviews, 11(2), 300-317.
106.Pütz, S., Gelius-Dietrich, G., Piotrowski, M., & Henze, K. (2005). Rubrerythrin and peroxiredoxin: two novel putative peroxidases in the hydrogenosomes of the microaerophilic protozoon Trichomonas vaginalis. Molecular and Biochemical Parasitology, 142(2), 212-223.
107.Pütz, S., Dolezal, P., Gelius-Dietrich, G., Bohacova, L., Tachezy, J., & Henze, K. (2006). Fe-hydrogenase maturases in the hydrogenosomes of Trichomonas vaginalis. Eukaryotic cell, 5(3), 579-586.
108.Ravi, N., Prickril, B. C., Kurtz Jr, D. M., & Huynh, B. H. (1993). Spectroscopic characterization of iron-57-reconstituted rubrerythrin, a non-heme iron protein with structural analogies to ribonucleotide reductase. Biochemistry, 32(33), 8487-8491.
109.Rasoloson, D., Tomkova, E., Cammack, R., Kulda, J., & Tachezy, J. (2001). Metronidazole-resistant strains of Trichomonas vaginalis display increased susceptibility to oxygen. Parasitology, 123(1), 45-56.
110.Regoes, A., Zourmpanou, D., León-Avila, G., Van Der Giezen, M., Tovar, J., & Hehl, A. B. (2005). Protein import, replication, and inheritance of a vestigial mitochondrion. Journal of Biological Chemistry, 280(34), 30557-30563.
111.Stocking, C. R., & Gifford, E. M. (1959). Incorporation of thymidine into chloroplasts of Spirogyra. Biochemical and Biophysical Research Communications, 1(3), 159-164.
112.Sagan, L. (1967). On the origin of mitosing cells. Journal of the Oretical Biology,14(3), 225-IN6.
113.Schumacher, G. F. B. (1980). Humoral immune factors in the female reproductive tract and their changes during the cycle. In Immunological Aspects of Infertility and Fertility Regulation (p. 93). Elsevier/North-Holland New York.
114.Steinbüchel, Alexander, and Miklós Müller. "Anaerobic pyruvate metabolism of Tritrichomonas foetus and Trichomonas vaginalis hydrogenosomes."Molecular and Biochemical Parasitology 20.1 (1986): 57-65.
115.Sherman, K. J., Daling, J. R., & Weiss, N. S. (1987). Sexually transmitted diseases and tubal infertility. Sexually Transmitted Diseases, 14(1), 12-16.
116.Sobel, J. D. (1990). Vaginal infections in adult women. The Medical Clinics of North America, 74(6), 1573-1602.
117.Sobel, J. D., Nagappan, V., & Nyirjesy, P. (1999). Metronidazole-resistant vaginal trichomoniasis—an emerging problem. New England Journal of Medicine, 341(4), 292-293.
118.Sieker, L. C., Holmes, M., Le Trong, I., Turley, S., Liu, M. Y., LeGall, J., & Stenkamp, R. E. (2000). The 1.9 Å crystal structure of the “as isolated” rubrerythrin from Desulfovibrio vulgaris: some surprising results. Journal of Biological Inorganic Chemistry, 5(4), 505-513.
119.Sobel, J. D., Nyirjesy, P., & Brown, W. (2001). Tinidazole therapy for metronidazole-resistant vaginal trichomoniasis. Clinical Infectious Diseases, 33(8), 1341-1346.
120.Schmid, G., Narcisi, E., Mosure, D., Secor, W. E., Higgins, J., & Moreno, H. (2001). Prevalence of metronidazole-resistant Trichomonas vaginalis in a gynecology clinic. The Journal of Reproductive Medicine, 46(6), 545-549.
121.Syvanen, M., & Kado, C. I. (2001). Horizontal gene transfer. Academic Press.
122.Schnarrenberger, C., & Martin, W. (2002). Evolution of the enzymes of the citric acid cycle and the glyoxylate cycle of higher plants. European Journal of Biochemistry, 269(3), 868-883.
123.Stadtman, E. R. (2004). Role of oxidant species in aging. Current medicinal chemistry, 11(9), 1105-1112.
124.Sutak, R., Dolezal, P., Fiumera, H. L., Hrdy, I., Dancis, A., Delgadillo-Correa, M. & Tachezy, J. (2004). Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proceedings of the National Academy of Sciences of the United States of America, 101(28), 10368-10373.
125.Sutak, R., Lesuisse, E., Tachezy, J., & Richardson, D. R. (2008). Crusade for iron: iron uptake in unicellular eukaryotes and its significance for virulence. Trends in Microbiology, 16(6), 261-268.
126.Shiflett, A., & Johnson, P. J. (2010). Mitochondrion-related organelles in parasitic eukaryotes. Annual Review of Microbiology, 64, 409.
127.Sung, Yun-Ju. (2010). The interaction between Trichomonas vaginalis and human HL-60 cell - Reactive oxygen species’ and cytokines’ point of views 國立成功大學微免所碩士論文.
128.Stemmer, S. M., Adelson, M. E., Trama, J. P., Dorak, M. T., & Mordechai, E. (2012). Detection rates of Trichomonas Vaginalis, in different age groups, using real-time polymerase chain reaction. Journal of Lower Genital Tract Disease,16 (4), 352-357.
129.Satterwhite, C. L., Torrone, E., Meites, E., Dunne, E. F., Mahajan, R., Ocfemia, M. C. B. & Weinstock, H. (2013). Sexually transmitted infections among US women and men: prevalence and incidence estimates, 2008. Sexually Transmitted Diseases, 40(3), 187-193.
130.Tanabe, M. (1979). NADH oxidase activity in Trichomonas vaginalis. Experimental Parasitology, 48, 135-143.
131.Tovar, J., Fischer, A., & Clark, C. G. (1999). The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Molecular Microbiology, 32(5), 1013-1021.
132.Tielens, A. G., Rotte, C., van Hellemond, J. J., & Martin, W. (2002). Mitochondria as we don't know them. Trends in Biochemical Sciences, 27(11), 564-572.
133.Tovar, J., León-Avila, G., Sánchez, L. B., Sutak, R., Tachezy, J., Van Der Giezen, M., & Lucocq, J. M. (2003). Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature, 426(6963), 172-176.
134.Upcroft, P., & Upcroft, J. A. (2001). Drug targets and mechanisms of resistance in the anaerobic protozoa. Clinical Microbiology Reviews, 14(1), 150-164.
135.Valko, M., Izakovic, M., Mazur, M., Rhodes, C. J., & Telser, J. (2004). Role of oxygen radicals in DNA damage and cancer incidence. Molecular and Cellular Biochemistry, 266(1-2), 37-56.
136.van der Giezen, M., Tovar, J., & Clark, C. G. (2005). Mitochondrion‐Derived Organelles in Protists and Fungi. International Review of Cytology, 244, 175-225.
137.Vos, T., Flaxman, A. D., Naghavi, M., Lozano, R., Michaud, C., Ezzati, M., ... & Abraham, J. (2013). Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet, 380(9859), 2163-2196.
138.Wallin, I. E. (1923). The mitochondria problem. The American Naturalist, 57(650), 255-261.
139.Wallin, I.E. (1927). Symbionticism and the origin of species. Baltimore: Williams & Wilkins Company. p. 171.
140.WARTON̄A, Andrzej., & Honigberg, B. M. (1979). Structure of trichomonads as revealed by scanning electron microscopy. The Journal of Protozoology, 26(1), 56-62.
141.Williams, K., Lowe, P. N., & Leadlay, P. F. (1987). Purification and characterization of pyruvate: ferredoxin oxidoreductase from the anaerobic protozoon Trichomonas vaginalis. Biochemical Journal, 246(2), 529-536.
142.Wølner-Hanssen P, et al., (1989) Clinical manifestations of vaginal trichomoniasis. Journal of American Medical Association. 261(4):571-6
143.Williams, B. A., Hirt, R. P., Lucocq, J. M., & Embley, T. M. (2002). A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature, 418(6900), 865-869.
144.Yun, J. (2013). Biochemical analysis of a potential drug target in the human protozoal pathogen Trichomonas vaginalis. University of the Pacific
145.Zhao, X., Chabes, A., Domkin, V., Thelander, L., & Rothstein, R. (2001). The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage. The European Molecular Biology Organization Journal, 20(13), 3544-3553.
146.Zimorski, V., Major, P., Hoffmann, K., Brás, X. P., Martin, W. F., & Gould, S. B. (2013). The N‐terminal sequences of four major hydrogenosomal proteins are not essential for import into hydrogenosomes of Trichomonas Vaginalis. Journal of Eukaryotic Microbiology, 60(1), 89-97.
147.衛生福利部 (2015) Cervical cancer screening registry system annual report republic of China
校內:2019-01-01公開