| 研究生: |
雷希林 Reza, A.H.M. Selim |
|---|---|
| 論文名稱: |
孟加拉及台灣的全新世沖積含水層中的砷富集及移動 Arsenic enrichment and mobilization in the Holocene alluvial aquifers of Bangladesh and Taiwan |
| 指導教授: |
簡錦樹
Jean, Jiin-Shuh |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 142 |
| 外文關鍵詞: | Bangladesh, Taiwan, Humic substances, Alluvial aquifers, Groundwater, Arsenic mobilization, X-ray absorption near-edge structure (XANES) |
| 相關次數: | 點閱:120 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Groundwater and core sediments of five boreholes (to a depth of 50 m) from the Chapai-Nawabganj area in northwestern Bangladesh were collected for arsenic concentration and geochemical analysis. Groundwater arsenic concentrations in the uppermost aquifer (10 to 40 m of depth) range from 2.8 g/L to 462.3 g/L. Groundwater geochemical conditions change from oxidized to successively more reduced, higher As concentration with depth. Higher sediment arsenic levels (55 mg/kg) were found within the upper 40 m of the drilled core samples.The dominant groundwater type is Ca-HCO3 with high concentrations of As, Fe and Mn but low levels of NO3- and SO4-2. Sequential extraction analysis reveals that Mn- and Fe-hydroxides and organic matter are the major leachable solids carrying As. High levels of arsenic concentration in aquifers are associated with fine-grained sediments. Statistical analysis clearly shows that As is closely associated with Fe, Mn and organic matter in sediments while As is better correlated with Mn in groundwater. These correlations along with results of sequential leaching experiments suggest that reductive dissolution of MnOOH and FeOOH mediated by anaerobic bacteria represents an important mechanism for releasing arsenic into the groundwater. Arsenic and Fe speciation in sediments were determined using XANES, the results imply that most of the sediments show As (V) and Fe (III) to be the dominant species in 3 physiographic settings. From Fe-EXAFS analysis, the results show that FeOOH is the main carrier of As in sediments of three physiographic settings of Bangladesh. The source of organic carbon was assigned from 13C values obtained using elemental analysis-isotope ratio mass spectrometry (EA-IRMS); the values (-10 to -29.44‰) strongly support the hypothesis that the organic matter of the Ganges flood plain is of terrestrial origin. The results demonstrate that the mean concentration of As and relative intensity of fluorescent humic substances are higher in the Chianan plain groundwater than those in the Langyang plain and Bengal delta plain groundwater. Moreover, FT-IR analysis shows that the humic substances extracted from the Chianan plain groundwater contain phenolic, alkanes, aromatic ring and amine groups, which tend to form metal carbon bonds with As and other trace elements. The data suggest that the reductive dissolution of As-adsorbed Fe- and Mn oxyhydroxides is the most probable mechanism for mobilization of As in the Bengal delta plain. However, in the Chianan plain and Lanyang plain, microbially-mediated reductive dissolution of As-adsorbed amorphous/crystalline Fe oxyhydroxides in organic-rich sediments is the primary mechanism for releasing As to groundwater.
Abraham, J., 1998. Spatial distribution of major and trace elements in shallow reservoir sediments: an example from Lake Waco. Texas. Environ. Geol. 36 (3–4), 349–363.
Acharyya, S.K., Lahiri, S., Raymahashay, B.C., Bhowmik, A., 1999. Arsenic poisoning in the Ganges delta. Nature 401, 545.
Acharyya, S.K., Lahiri, S., Raymahashay, B.C., Bhowmik, A., 2000. Arsenic toxicity of groundwater of the Bengal basin in India and Bangladesh: the role of Quaternary stratigraphy and Holocene sea-level fluctuation. Environ. Geol. 39, 1127–1137.
Ahmed, K.M., 1994. Hydrogeology of the Dupi Tila Aquifer of the Barind Tract, NW Bangladesh. PhD thesis, Univ. London, (Unpublished).
Ahmed, K.M., Bhattacharya, P., Hasan, M.A., Akhter, S.H., Alam, S. M.M., Bhuyian, M.A.H., Imam, M.B., Khan, A.A., Sracek, O., 2004. Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: an overview. Appl. Geochem 19, 181–200.
Ahmed, K.M., Burgess, W.G., 1995. Bils and Barind aquifer, Bangladesh. In: Brown, A.G. (Ed.), Geomorphology and Groundwater. Wiley, New York, pp. 143–155.
Ahmed, K.M., Hoque, M., Hasan, M.K., Ravenscroft, P., Chowdhury, L.R., 1998a. Origin and occurrence of water well methane gas in Bangladesh aquifers. J. Geol. Soc. India 51, 697–708.
Ahmed, K.M., Imam, M.B. Akhter, S.H., Hasan, M.A., Alam, M.M., Chowdhury, S.Q., Burgess, W.G., Nickson, R., McArthur, J.M., Hasan, M.K., Ravenscroft P., Rahman, M.M., 1998b. Mechanism of arsenic release to groundwater: geochemical and mineralogical evidence. Internat. Conf. On Arsenic Pollution of Groundwater in Bangladesh: Causes, Effects and Remedies. Dhaka, February 1998, pp. 125-126.
Akai, J., Izumi, K., Fukuhara, H., Masuda, H., Nakano, S., Yoshimura, T., Ohfuji, H., Anawar, H.M., Akai, K., 2004. Mineralogical and geomicrobiological investigations on groundwater arsenic enrichment in Bangladesh. Appl. Geochem 19, 215–230.
Allison J.D., Brown D.S., & Novo-Gradac K.J., 1991. MINTEQA2, a geochemical assessment data base and test cases for environmental systems, Environmental Protection Agency, Washington, DC.
Anawar, H.M., Akai, J., Komaki, K., Terao, H., Yoshioka, T., Ishizuka, T., Safiullah, S., Kato, K., 2003. Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization processes. J. Geochem. Explor 77, 109–131.
Anawar, H.M., Komaki, K., Akai, J., Takada, J., Ishizuka, T., Takahashi, T., Yoshioka, T., Kato, K., 2002. Diagenetic control on arsenic partitioning in sediments of the Meghna River delta, Bangladesh. Environ. Geol. 41, 816–825.
BADC, 2002. Survey report on irrigation equipment and irrigated area in Boro/2002 season. Survey and Monitoring Project for Development of Minor Irrigation, December 2002, Bangladesh Agricultural Development Corporation, Dhaka, Bangladesh.
Bertrand, P, Lallier-Verges, E, Grall, H., 1991. Organic petrology of Neogene sediments from North Indian Ocean (Leg 117): amount, type, and preservation of organic matter. In: Prell, W.L., Niitsuma, N., et al. (Eds.), Proceedings of the Ocean Drilling Program, Sci. Res. Ocean Drilling Program, 587–594.
BGS and DPHE, 2001. Arsenic Contamination of Groundwater in Bangladesh, Vol. 2. Final Report, BGS Technical Report WC/00/19.
Bhattacharya, P., 2002. Arsenic contaminated groundwater from the sedimentary aquifers of South-East Asia. In: Bocanegra, E., Martı´nez, D. Massone, H. (Eds.), Groundwaterand Human Development, Proc. XXXII IAH and VI ALHSUD Congress, Mar del Plata, Argentina, 21-25 October 2002, pp. 357–363.
Bhattacharya, P., Chatterjee, D., Jacks, G., 1997. Occurrence of arsenic-contaminated groundwater in alluvial aquifers from the Delta Plain, Eastern India: options for a safe drinking water supply. Water Resour. Dev. 13: 79–92.
Bhattacharya, P., Frisbie, S.H., Smith, E., Naidu, R., Jacks, G., Sarkar, B., 2002a. Arsenic in the environment: a global perspective. In: Sarkar, B. (Ed.), Handbook of Heavy Metals in the Environment. Marcell Dekker Inc., New York, pp. 147–215.
Bhattacharya, P., Jacks, G., Ahmed, K.M., Khan, A.A., Routh, J., 2002b. Arsenic in groundwater of the Bengal Delta Plain aquifers in Bangladesh. Bull. Environ. Contam. Toxicol 69, 538–545.
Bhattacharya, P., Jacks, G., Jana, J., Sracek, A., Gustafsson, J.P., Chatterjee, D., 2001. Geochemistry of the Holocene alluvial sediments of Bengal Delta Plain from West Bengal, India: Implications on arsenic contamination in groundwater. In: Jacks, G., Bhattacharya, P., Khan, A.A. (Eds), Groundwater Arsenic Contamination in the Bengal Delta Plain of Bangladesh. TRITA-AMIRep. 3084, Kungl Tekniska Ho¨ gskolan, Stockholm, p. 21–40.
Bibi, M.H., Ahmed, F., Ishiga, H., 2006. Distribution of arsenic and other trace elements in the Holocene sediments of the Meghna River Delta, Bangladesh. Environ. Geol. 50, 1243–1253.
Breit, G.N., Foster, A.L., Sanzalone, R.F., Yount, J.C., Whitney, J.W., Welch, A.H., Islam, M.K., Islam, M.N., 2001a. Arsenic cycling in eastern Bangladesh: the role of phyllosilicates. Geological Society of America Abstract with Program 32 (7), A192.
Breit, G. N., Whitney, J., Foster, A. L., Welch, A. H., Yount, J., Sanzolone, R., Islam, M. K., Islam, M. S., Islam, M. M., Sutton, S., Newville, M., 2001b. Preliminary evaluation of arsenic cycling in the sediments of Bangladesh. In: Proc. 2001 US Geol. Surv. Workshop on Arsenic in the Environment, Denver, Feb. 21–22.
Broms, S., Fogelstrom, J., 2001. Field Investigations of Arsenic- Rich Groundwater in the Bengal Delta Plain, Bangladesh. MSc thesis, Series 2001:18, Department of Land and Water Resources Engineering, KTH, Stockholm.
Chapelle F.H., Zelibor Jr., J.L., Grimes D.J., Knobel L.L., 1987. Bacteria in deep coastal plain sediments of Maryland: a possible source of CO2 to groundwater. Water Resour. Res . 23,1625–1632.
Chen, W.S., 2000. Analysis of sediments and sedimentary environments in stratigraphic correlation of the Lanyang Plain. Taipei: Taiwan Central Geological Survey Report, Taiwan (ROC) (in Chinese).
Chiu, H. C., Shih, S. R., Lu, F. J., Yang, H. L., 1993. Stimulation of endothelin production in cultured human endothelial cells by fluorescent compounds associated with Blackfoot disease. Thromb. Res. 69, 139-151.
Chowdhury, T.R., Basu, G.K., Mandal, B.K, Biswas, B.K., Samanta, G., Chowdhury, U.K., Chanda, C.R., Lodh, D., Roy, S.L., Saha, K.C., Roy, S., Kabir, S., Quamruzzaman, Q., Chakraborti, D., 1999. Arsenic poisoning in the Ganges delta. Nature 401:545–546.
Cochran, J.R., Stow, D.A.V., Auroux, C., Amano, K., Balson, P.S., Boulegue, J. J., Brass, G.W., Corrigan, J., Gartner, S., Hall, S., Iaccarino, S., Ishizuka, T., 1989. Leg 116 Distal Bengal Fan. In: Proceedings of the Ocean Drilling Program, Initial Reports, vol. 116. Ocean Drilling Program, College Station, TX, 388.
Collister, J.W., Rieley, G., Stern, B., Eglinton, G., Fry, B., 1994. Compound-specific 13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms. Organic Geochemistry 21 (6–7), 619–627.
Cummings, D.E., Caccavo, F., Fendorf, S., Rosenzweig, R.F., 1999. Arsenic mobilization by the dissimilatory Fe (III)-reducing bacterium Shewanella alga BrY. Environ. Sci. Technol 33, 723–729.
Das, D., Samanta, G., Mandal, B.K., Chowdhury, T.R., Chanda, C.R., Chowdhury, P.P., Basu, G.K., Chakraborti, D., 1996. Arsenic in groundwater in six districts of West Bengal, India. Environ. Geochem. Health 18, 5–15.
Datta, D.K., Subramanian, V., 1998. Distribution and fractionation of heavy metals in the surface sediments of the Ganges- Brahmaputra-Meghna river system in the Bengal Basin. Environ. Geol. 36, 93–101.
Derry, L.A., France-Lanord, C., 1996. Neogene Himalayan weathering history and river 87Sr/86Sr: impact on the marine Sr record. Earth and Planetary Science Letters 142 (1–2), 59–74.
Dowling, C. B., Poreda, R. J., Basu, A. R., Peters, S. L., 2002. Geochemical study of arsenic release mechanisms in the Bengal Basin groundwater. Water Resour. Res. 38(9), 1-18.
Eglinton, G., Hamilton R.J., 1967. Leaf epicuticular waxes. Science 156 (780), 1322–1335.
Fendorf, S.E., Eick, M.J., Grossl, P., Sparks, D.L., 1997. Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environ. Sci. Technol. 31, 315–320.
France-Lanord, C., Derry, L.A., 1994. 13C of organic carbon in the Bengal Fan: Source evolution and transport of C3 and C4 plant carbon to marine sediments. Geochim. Cosmochim. Acta 58, 4809–4814.
Freeman, K.H., Colarusso, L.A., 2001. Molecular and isotopic records of C4 grassland expansion in the late Miocene. Geochimica et Cosmochimica Acta 65, 1439–1454.
Galy, A., France-Lanord, C., 2001. Higher erosion rates in the Himalaya: Geochemical constraints on riverine fluxes. Geology 29, 23–26.
Galy, V., France-Lanord, C., Beyssac, O., Faure, P., Kudrass, H., Palhol, F., 2007 Efficient organic carbon burial in the Bengal Fan sustained by the Himalayan erosional system. Nature 450, 407–410.
Garcia-Sanchez, A., Alvarez-Ayuso, E., 2003. Arsenic in soils and waters and its relation to geology and mining activities (Salamanca Province, Spain). J. Geochem. Explor 80, 69–79.
Glynn, P.D., Plummer, L.N., 2005. Geochemistry and the understandingof ground-water systems.Hydrogeol. J. 13, 263–287.
Harvey, C. F., Swartz, C. H., Badruzzaman, A. B. M., Keon-Blute, N., Yu, W., Ali, M. A., Jay, J., Beckie, R., Niedan, V., Brabander, D., Oates, P. M., Ashfaque, K. N., Islam, S., Hemond, H. F., Ahmed, M. F., 2002. Arsenic mobility and groundwater extraction in Bangladesh. Science 22, 1602–1606.
Hasan, M.A., Ahmed, K.M., Sracek, O., Bhattacharya, P., von Bro¨mssen, M., Broms, S., Fogelstro¨m, J., Mazumder, M.L., Jacks, G., 2007. Arsenic in shallow groundwater of Bangladesh: investigations from three different physiographic settings. Hydrogeol. J. 15, 1507–1522.
Hedges, J.I., Keil, R.G., 1995. Sedimentary organic matter preservation: An assessment and speculative synthesis. Mar. Chem. 49, 81–115.
Horneman, A., van Geen, A., Kent, D.V., Mathe, P.E., Zheng, Y., Dhar, R.K., O’Connel, S., Hocque, M.A., Aziz, Z., Shamsudduha, M., Sedique, A.A., Ahmed, K.M., 2004. Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part I: evidence form sediment profiles. Geochem. Cosmochim. Acta 68, 3459–3473.
Hseu, Y.C., Chang, W.C., & Yang, H.L., 2001. Inhibition of human plasma activity using humic acids with arsenic. Sci Total Environ; 273:93– 9.
Hsu, S.K., 1998. Plan for a groundwater monitoring network in Taiwan. Hydrogeol. J. 6, 405–415.
Ishiga, H., Nakamura, T., Sampei, Y., Tokuoka, T., Takayasu, K., 2000. Geochemical implication for the maximum flooding of the Jomon transgression in the coastal lagoon sediments, San’in district, SW Japan. Geosci. Rep. Shimane Univ. Jpn. 17, 11-20.
Islam, F.S., Gault, A.G., Boothman, C., Polya, D.A., Charnock, J.M., Chatterjee, D., Lloyd, J.R., 2004. Role of metal- reducing bacteria in As release from Bengal delta sediments. Nature 430, 68–71.
Jokic, A., Srejic, R., Pfendt, P.A., Zakrzewska, J., 1995. Characterization of lake sediment humic acids from the Celijie lake system near Krusevac (central Serbia) by 13C and 1H solution NMR and 13C CPMAS NMR. Water Air Soil Pollut. 84, 159–173.
Juhasz, A.L., Smith, E., Weber, J., Naidu, R., Rees, M., Rofe, A., Kuchel, T., Sansom, L., 2008. Effect of soil ageing on in vivo arsenic bioavailability in two dissimilar soils. Chemosphere 71, 2180-2186.
Kent, D.B., Fox, P.A., 2004. The influence of groundwater chemistry on arsenic concentrations and speciation in a quartz sand and gravel aquifer. Geochem. Trans. 5 (1), 1–11.
Khan, A.A., Rahman, T., 1992. An analysis of gravity field and tectonic evaluation of the northwestern part of Bangladesh. Tectonophysics 206, 351–364.
Korte, N.E., Fernando, Q., 1991. A review of arsenic (III) in groundwater. Crit. Rev. Environ. Contr. 21: 1-39.
Kuo, Z. B., Chen, M. Z., 1969. A clinical therapy of Blackfoot disease. J. Formosan Med. Assoc. 68, 275-289.
Kuwatsuka, S., Watanabe, A., Itoh, K., Arai S., 1992. Comparison of two methods of preparation of humic and fulvic acids, IHSS method and NAGOYA method, Soil Sci. Plant Nutr. 38, 23-30.
Lee, J. U., Lee, S. W., Kim, K. W., Yoon, C. H. 2005b. The effects of different carbon sources on microbial mediation of arsenic in arsenic-contaminated sediment. Environ. Geochem. Health 27, 159–168.
Lee, M.-K., Saunders, J.A., Wilkin, R.T. Mohammad, S., 2005a. Geochemical modeling of arsenic speciation and mobilization: Implications for bioremediation. In: O’Day, P.A., Vlassopoulos, D., Meng, X., Benning, L.G. (Eds), Advances in Arsenic Research: Integration of Experimental and Observational Studies and Implications for Mitigation. Am. Chem. Soc. Symp. Ser. 915, 398-413.
Lee, K.-Y, Kim, K.-W, Kim, S.-O., 2009. Geochemical and microbial effects on the mobilization of arsenic in mine tailing soils. Environ. Geochem. Health 32, 31-44.
Lee, M. K., Griffin, J., Saunders, J. A., Wang, Y., Jean, J-S., 2007. Reactive transport of trace elements and isotopes in Alabama coastal plain aquifers. J. Geophys. Res. 112, G02026, doi:10.1029/2006JG000238.
Lin, H-T., Wang, M. C., Li, G-C., 2004. Complexation of arsenate with humic substance in water extract of compost. Chemosphere 56, 1105-1112.
Lovley, D. R., 1993. Dissimilatory metal reduction. Ann. Rev. Microbiol. 47, 263–290.
Lowers, H.A., Breit, G.N., Foster, A.L., Whitney, J., Yount, J., Uddin, M.N., Muneem, A.A., 2007. Arsenic incorporation into authigenic pyrite, Bengal Basin sediment, Bangladesh. Geochim. Cosmochim. Acta 71 (11), 2699–2717.
Lu, F.J., 1990a. Review: Fluorescent humic substance and blackfoot disease in Taiwan. Appl. Organomet. Chem. 4, 191–195.
Lu, F.J., 1990b. Blackfoot disease: arsenic or humic acids? Lancet 336, 115–116.
Lu, F. J., Yamamura, Y., and Yamauchi, H., 1988. Studies on fluorescent compounds in water of a well in Blackfoot disease endemic areas in Taiwan: Humic substances. J. Formosan Med. Assoc. 87, 66-75.
Lu, F.J., 1975. Physicochemical characteristics of drinking water in Blackfoot disease endemic areas in Chiai and Tainan Hsiens. J. Formosan Med. Assoc. 74: 596–605.
McArthur, J.M., Banerjee, D.M., Hudson-Edwards, K.A., Mishra, R., Purohit, R., Ravenscroft, P., Cronin, A., Howarth, R.J., Chatterjee, A., Talkdar, T., Lowry, D., Houghton, S., Chadha, D. K., 2004. Natural organic matter in sedimentary basins and its relation to arsenic in anoxic groundwater: the example of West Bengal and its worldwide implications. Appl. Geochem 19, 1255–1293.
McArthur, J.M., Ravencroft, P., Safiullah, S., Thirlwall, M.F., 2001. Arsenic in groundwater: testing pollution mechanism for sedimentary aquifers in Bangladesh. Water Resour. Res. 37, 109–117.
Meharg, A.A., Scrimgeour, C., Hossain, S.A., Fuller, K., Cruickshank, K., Williams, P.N., Kinniburgh, D.G., 2006. Codeposition of organic carbon and arsenic in Bengal Delta Aquifers. Environ. Sci. Technol. 40:4928–4935.
Meliker, J.R., Nriagu, J.O., 2007. Arsenic in drinking water and bladder cancer: review of epidemiological evidence. In: Bhattacharya, P., Mukherjee, A.B., Bundschuh, J., Zevenhoven, R., Loppert, R.H. (eds) Arsenic in soil and groundwater environment. Trace Metals and other Contaminants in the Environment, J.O. Nriagu (Series Editor), Elsevier B.V. Amserdam, The Netherlands 9, 551-584.
Meyers, P.A., Dickens, G.R., 1992. Accumulation of organic matter in sediments of the Indian Ocean: a synthesis of results from scientific deep sea drilling. In: Duncan, R.A., Rea, D.K., Kidd, R.B., von Rad, U., Weissel, J.K. (Eds.), Synthesis of Results from Scientific Drilling in the Indian Ocean. Geophysical Monograph. American Geophysical Union, 295–309.
Miano, T.M., Senesi, N., 1992. Synchronous excitation fluorescence spectroscopy applied to soil humic substances chemistry. Science of the Total Environment 117 (118), 41-51.
Montoneri, E., Savarino, P., Adani, F., Genevini, P.L., Ricca, G., Zanetti, F., Paletti, S., 2003. Polyalkylphenil-sulphonic acid with acid groups of variable strength from compost. Waste Manag. 23, 523–535.
Mukherjee, A.B., Bhattacharya, P., 2001. Arsenic in groundwater in the Bengal Delta Plain: slow poisoning in Bangladesh. Environ. Rev. 9, 189–220.
Nagao S., Matsunaga T., Suzuki Y., Ueno T., Amano H., 2003. Characteristics of humic substances in the Kuji River waters as determined by high-performance size exclusion chromatography with fluorescence detection. Water Research 37, 4159–4170.
Nath, B., Berner, Z., Chatterjee, D., Mallik, S. B., Stüben, D., 2008. Mobility of arsenic in West Bengal aquifers conducting low and high groundwater arsenic. Part II: Comparative geochemical profile and leaching study. Appl. Geochem. 23, 996– 1011.
Nealson, K. H., Saffarini, D., 1994. Iron and manganese in anaerobic respiration: Environmental significance, physiology, and regulation. Ann. Rev. Microbiol. 48, 311–343.
Nickson, R., McArthur, J., Burgess, W., Ahmed, K.M., Ravenscroft, P., Rahman, M., 1998. Arsenic poisoning of Bangladesh groundwater. Nature 395, 338.
Nickson, R.T., McArthur, J.M., Ravenscroft, P., Burgess, W.G., Ahmed, K.M., 2000. Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl. Geochem 15, 403–413.
Niemayer, J., Chen, Y., Bollag, J.M., 1992. Characterization of humic acids, composts, and peat by diffuse reflectance fourier-transformed infrared spectroscopy. Soil Sci. Soc. Am. J. 56, 135-140.
Norman, M.D., De Deckker, P., 1990. Trace metals in lacustrine and marine sediments: a case study from the Gulf of Carpentaria, northern Australia. Chem. Geol. 82, 299–318.
Ohkouchi, N., Kawamura, K., Taira, A., 1997. Molecular paleoclimatogy: reconstruction of climate variabilities in the late Quaternary. Organic Geochemistry 27 (3–4), 173–183.
Ohno, K., Furukawa, A., Hayashi, K., Kamei, T., Magara, Y., 2005. Arsenic contamination of groundwater in Nawabganj, Bangladesh, focusing on the relationship with other metals and ions. Water Sci. Technol 52, 87–94.
Padmalal, D., Maya, K., Seralathan, P., 1997. Geochemistry of Cu, Co, Ni, Zn, Cd and Cr in the surficial sediments of a tropical estuary, southwest coast of India: a granulometric approach. Environ. Geol. 31 (1/2), 85–93.
Pal, T., Mukherjee, P. K., Sengupta, S., 2002a. Nature of arsenic pollutants in groundwater of Bengal Basin – a case study from Baruipur area, West Bengal, India. Curr. Sci. 82, 554–561.
Pal, T., Mukherjee, P. K., Sengupta, S., Bhattacharya, A. K., Shome, S., 2002b. Arsenic pollution in groundwater of West Bengal, India – an insight into the problem by subsurface sediment analysis. Gondwana Res. 5, 501–502.
Parkhurst, D.L., 1995. User’s guide to PHREEQC, a computer model for speciation, reaction-path, advective-transport and inverse geochemical calculations. US Geol. Surv. Water Resour. Invest. Rep., 95–4227.
Parkhurst, D.L., Appelo C.A.J., 1999. Users guide to PHREEQC (version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical modeling. US Geol Surv Water Resour Invest Rep, 99–4259.
Peltier, E.F., Webb, S.M., Gaillard, J.F., 2003. Zinc and lead sequestration in an impacted wetland system. Adv. Environ. Res 8, 103–112.
Peters, K.E., Moldowan, J.M., 1993. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice-Hall, Inc., Englewood Cliffs, 361.
Pierce, M.L., Moore, C.B., 1980. Adsorption of arsenite on amorphous iron hydroxides from dilute aqueous solution. Environ. Sci. Technol 14, 214–216.
Polizzotto, M.L., Harvey, C.F., Li, G., Badruzzman, B., Ali, A., Newville, M., Sutton, S., Fendorf, S., 2006. Solid-phase and desorption processes of arsenic within Bangladesh sediments. Chem. Geol. 228, 97–111.
Polizzotto, M.L., Kocar, B.D., Benner, S.G., Sampson, M., Fendorf, S., 2008. Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature 454, 505–508.
Postma, D., Larsen, F., Nguyen, T.M.H., Mai, T.D., Pham, H.V., Pham, Q.N., Jessen, S., 2007. Arsenic in groundwater of the Red River flood plain, Vietnam: controlling geochemical processes and reactive transport modelling. Geochim. Cosmochim. Acta 71:5054–5071.
Poynter, J., Eglinton, G., 1990. Molecular composition of three sediments from Hole 717c: the Bengal Fan. In: Cochran, J.R., Stow, D.A.V., et al. (Eds.), Proceedings of the Ocean Drilling Program, Sci. Res. Ocean Drilling Program, College Station, TX, 155–161.
Rao, P., Mak, M.S.H., Liu, T.Z., Lai, K.C.K., Lo, I.M.C., 2009. Effects of humic acid on arsenic(V) removal by zero-valent iron from groundwater with special references to corrosion products analyses. Chemosphere 75, 156-162.
Ravenscroft, P., 2001. Distribution of groundwater arsenic in Bangladesh related to geology. In: Jacks, G., Bhattacharya, P., Khan, A.A. (Eds.), Groundwater Arsenic Contamination in the Bengal Delta Plains of Bangladesh. Proc. KTH-Dhaka University Seminar. KTH Special Publication, TRITA-AMI Report 3084, pp. 41–56.
Redman, A.D., Macalady D.L., Ahmann D., 2002. Natural organic matter affects arsenic speciation and sorption onto hematite. Environ. Sci. Technol. 36, 2889–2896.
Reza, A.H.M.S., Jean, J.-S., Lee, M.-K. Yang, H.-J., Liu, C.-C., 2010a. Arsenic enrichment and mobilization in the Holocene alluvial aquifers of the Chapai-Nawabganj district, Bangladesh: A geochemical and statistical study. Appl. Geochem. 25, 1280–1289.
Reza, A.H.M.S., Jean J.-S., Yang, H.-J., Lee, M.-K, Woodall, B., Liu, C.-C., Lee, J.-F., Luo, S.-D., 2010b. Occurrence of arsenic in core sediments and groundwater in the Chapai-Nawabganj District, Northwestern Bangladesh. Water Research, 44, 2021-2037.
Reza, A.H.M.S., Jean, J-S., Yang H-J., Lee M-K., Hsu H-F., Liu, C-C., Lee, Y-C., Bundschuh J., Lin K-H, Lee C-Y., 2010c. A comparative study on arsenic and humic substances in alluvial aquifers of Bengal delta plain (NW Bangladesh), Chianan plain (SW Taiwan) and Lanyang plain (NE Taiwan): implication of arsenic mobilization mechanisms. Environ. Geochem. Health, DOI 10.1007/s10653-010-9335-5.
Routh, J., Bhattacharya, P., Jacks, G., Ahmed, K.M., Khan, A.A., Rahman, M.M., 2000. Arsenic geochemistry of Tala groundwater and sediments from Satkhira District, Bangladesh. Eos Trans Am. Geophys. Union 81, 550.
Roychowdhury, T., Tokunaga, H., Uchino, T., Ando, M., 2005. Effect of arsenic-contaminated irrigation water on agricultural land soil and plants in West Bengal, India. Chemosphere 58, 799-810.
RSP, 1996. Spatial Representation and Analysis of Hydraulic and Morphological Data. Report No. FAP 24, WARPO, Dhaka, Bangladesh.
Ruiz-Chancho, M.J., Lopez-Sanchez, J.F., Schmeisser, E., Goessler, W., Francesconi, K.A., Rubio, R., 2008. Arsenic speciation in plants growing in arsenic-contaminated sites. Chemosphere 71, 1522-1530.
Saha, S.K., Kumar, U., Rahman, M., 2009. An assessment of groundwater chemistry of Barind Tract in Bangladesh with special reference to carbonate weathering. Asian J. Water, Environ. Pollut 6, 51–58.
Saunders, J.A., Lee, M.-K., Uddin, A., Mohammad, S., Wilkin, R.T., Fayek, M., Korte, N.E., 2005. Natural arsenic contamination of Holocene alluvial aquifers by linked tectonic, weathering, and microbial processes. Geochem. Geophys. Geosyst 6, Q04006. doi:10.1029/2004GC000803.
Shamsudduha, M., Uddin, A., Saunders, J.A., Lee, M.K., 2008. Quaternary stratigraphy, sediment characteristics and geochemistry of arsenic-contaminated alluvial aquifers in the Ganges–Brahmaputra floodplain in central Bangladesh. J. Contam. Hydrol 99, 112–136.
Singh, M., Sharma, M., Tobschall, H.J., 2005. Weathering of the Ganga alluvial plain, northern India: implications from fluvial geochemistry of the Gomati River. Appl. Geochem 20, 1–21.
Smedley, P.L., Kinniburgh, D.G., 2002. A review of the source, behavior and distribution of arsenic in natural waters. Appl. Geochem 17, 517–568.
SPSS Inc., 1998. SPSS BASE 8.0 – Application Guide. SPSS Inc., Chicago, USA.
Stollenwerk, K.G., Breit, G.N., Welch, A.H., Yount, J.C., Whitney, J. W., Foster, A.L., Uddin, M.N., Majumder, R.K., Ahmed, N., 2007. Arsenic attenuation by oxidized aquifer sediments in Bangladesh. Sci. Total Environ 379, 133–150.
Stüben, D., Berner, Z., Candrasekharam, D., Karmakar, J., 2003. Arsenic enrichment in groundwater of West Bengal, India: geochemical evidence for mobilization of As under reducing conditions. Appl. Geochem. 18, 1417–1434.
Sullivan, K.A., Aller, R.C., 1996. Diagenetic cycling of arsenic in Amazon shelf sediments. Geochim. Cosmochim. Acta 60 (9), 1465–1477.
Swartz, C.H., Blute, N.K., Badruzzman, B., Ali, A., Brabander, D., Jay, J., Besancon, J., Islam, S., Hemond, H.F., Harvey, C.F., 2004. Mobility of arsenic in a Bangladesh aquifer: inferences from geochemical profiles, leaching data and mineralogical characterization. Geochim. Cosmochim. Acta 68, 4539–4557.
Tang, J., Lin, N.F., Bian, J.M., Liu, W.Z., Zhang, Z.L., 1996. Environmental geochemistry of arsenism areas in Hetao Plain, Inner Mongolia. Hydrogeol Eng Geol. 1, 49–54 (In Chinese with English abstract).
Tessier, A., Carignan, R., Belzile, N., 1994. Processes occurring at the sediment–water interface: emphasis on trace elements. In: Buffle, J., DeVitre, R.R. (Eds.), Chemical and Biological Regulation of Aquatic System. Lewis Publishers, Boca Raton, pp. 137–173.
Thurman, E. M., Malcolm, R. L., 1981. Preparative Isolation of Aquatic Humic Substances. American Chemical Society 15, 463-466.
Tribovillard, N.P., Desprairies, A., Verges, E.L., Bertrand, P., Moureau, N., Ramdani, A., Ramanampisoa, L., 1994. Geochemical study of organic-matter rich cycles from the Kimmeridge Clay Formation of Yorkshire (UK): productivity versus anoxia. Palaeogeogr. Palaeoclimatol. Palaeoecol 108, 165–181.
Tseng, C-H., 2002. An overview on peripheral vascular disease in Blackfoot disease-hyperendemic villages in Taiwan. Angiology 53, 529-537.
Tseng, W.P., 1985. Blackfoot disease and skin cancer in an endemic area of chronic arsenicism in Taiwan. In: Proceedings of the Seminar on Environmental Toxicology, Taipei, 26 March to 2 April, 1985, pp. 142–155.
Tseng, W.P., 1977. Effects and dose–response relationship of skin cancer and Blackfoot disease with arsenic. Environ. Health Perspect 19, 109–119.
Tseng, W.P., Chen, W.Y., Sung, J.L., Chen, J.S., 1961. A Clinical Study of Blackfoot Disease in Taiwan, An Endemic Peripheral Vascular Disease. Memoire College Med., National Taiwan University, vol. 7, pp. 1–18.
Tseng, W. P., Chu, H. M., How, S. W., Fong, J. M., Lin, C. S., and Yeh, S., 1968. Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J. Natl. Cancer Inst. 40, 453-463.
van Geen, A., Ahasan, H., Horneman, A.H., Dhar, R.K., Zheng, Y., Hussain, I., Ahmed, K.M., Gelman, A., Stute, K.M.M., Simpson, H.J., Wallace, S., Small, C., Parvez, F., Slakovich, V., Lolacono, N.J., Becker, M., Cheng, Z., Momtaz, H., Shahnewaz, M., Seddique, A.A., Graziano, J., 2002. Promotion of well-switching to mitigate the current arsenic crisis in Bangladesh. Bull. WHO 80, 732–737.
Villalobos, M., Trotz, M.A., Leckie, J.O., 2001. Surface complexation modeling of carbonate effects on the adsorption of Cr(VI), Pb-(II), and U(VI) on goethite. Environ. Sci. Technol. 35, 3849–3856.
Wagai, R., Mayer L.M., 2007. Sorptive stabilization of organic matter in soils by hydrous iron oxides. Geochim. Cosmochim. Acta 71, 25–35.
Wang, S.L., Mulligan, C.N., 2009. Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid. Chemosphere 74, 274-279.
Wang, S.W., Liu, C.W., Jang, C.S., 2007. Factors responsible for high arsenic concentrations in two groundwater catchments in Taiwan. Applied Geochemistry 22, 460–476.
Williams, A.G.B., Scherer, M.W., 2004. Spectroscopic Evidence for Fe(II)−Fe(III) Electron Transfer at the Iron Oxide−Water Interface. Environ. Sci. Technol. 38, 4782–4790.
Wilke, M., Farges, F., Petit, P., Brown JR, G.E., Martin, F., 2001. Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study. Am. Mineral. 86, 714–730.
Wilson, M.A., 1987. NMR Techniques and Applications in Geochemistry and Soil Chemistry. Pergamon Press, Oxford.
Yamazaki, S., Ishiga, H., Dozen, K., Higashi, N., Ahmed, F., Sampei, Y., Rahman, Md H., Islam, M.B., 2000. Geochemical compositions of sediments of Ganges delta of Bangladesharsenic release from the peat? Chikyu Kagaku (Earth Science) 54, 81–93 (in Japanese with English abstract).
Yang, H. L., Tu, S. C., Lu, F. J., Chiu, H. C., 1994. Plasma protein C activity is enhanced by arsenic but inhibited by fluorescent humic acid associated with blackfoot disease. Am. J. Hematol. 46, 264-269.
Yasuda, S., Hamaguchi, E., Asano, K., 1999. Ready chemical conversion of acid hydrolysis lignin into water-soluble lignosulfonates. III. Successive treatment of acid hydrolysis lignin and lignin model compounds by phenolation and aryl-sulfonation. J. Wood Sci. 45, 245–249.
Yu, H. S., Sheu, H. M., Ko, S. S., Chiang, L. C., Chieh, C. H., Lin, S. M., Tseng, B. R., Chen, C. S., 1984. Studies on blackfoot disease and chronic arsenism in southern Taiwan, with special reference to skin lesions and fluorescent substances. J. Dermatol. 11, 361-370.
Yu, X., 2001. Humic acids from endemic arsenicosis areas in Inner Mongolia and from the blackfoot-disease areas in Taiwan: a comparative study. Environmental Geochemistry and Health 23, 27–42.
Zheng, Y., van Geen, A., Gavrieli, A., Dhar, R., Simpson, J., Ahmed, K.M., 2004. Redox control of arsenic mobilization in Bangladesh groundwater. Appl. Geochem 19, 201–214.
Zheng, Y., van Geen, A., Stute, M., Dhar, R., Mo, Z., Cheng, Z., Horneman, A., Gavrieli, I., Simpson, H.J., Versteeg, R., Steckler, M., Grazioli-Venier, A., Goodbred, S., Shahnewaz, M., Shamsudduha, M., Hoque, M.A., Ahmed, K.M., 2005. Geochemical and hydrogeological contrasts between shallow and deeper aquifers in two villages of Araihazar, Bangladesh: implications for deeper aquifers as drinking water sources. Geochim. Cosmochim. Acta 69, 5203–5218.