| 研究生: |
蕭廷翰 Hsiao, Ting-Han |
|---|---|
| 論文名稱: |
長樁模型於飽和粉土質砂中之反覆加載反應 Cyclic responses of a long pile model in a saturated silty sand |
| 指導教授: |
張文忠
Chang, Wen-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 153 |
| 中文關鍵詞: | 霧式霣落法 、標度槽 、長樁模型 、樁土互制反應 、側向反覆加載 |
| 外文關鍵詞: | Mist pluviation, Calibration chamber, Long pile model, Soil-pile interaction response, Cyclic lateral loading |
| 相關次數: | 點閱:95 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣目前所仰賴的能源主要來自於非再生能源,為保護環境以達永續發展,故研發再生能源之發電技術是現今的主要目標,離岸風電即為目標之一。樁基礎為離岸風機常採用的基礎型式,其受側向載重的行為是設計時主要控制的因素,而離岸風機之基樁常年會受到風、波流造成的側向反覆載重,且因台灣西海岸為軟弱的粉質砂土層,又時常受到颱風、地震的侵襲,造成基樁側向載重傳遞機制複雜。本研究利用一可控制土壤邊界應力與應變之模型基樁測試平台,用以模擬現地土壤的應力狀態,其為原用於CPT標定之標度槽修改而成,利用標度槽可控制邊界條件之特性,試體壓密時可利用邊界應變控制維持Ko狀態,而在側向加載過程中可施加數值模擬之邊界補償應力以模擬半無限域狀態,進而降低邊界效應的影響。本研究利用霧式霣落法製作飽和均質的大型粉質砂土試體,以模型基樁測試平台模擬不同邊界條件,進行長樁模型的側推(push-over)與側向反覆加載(cyclic lateral loading)試驗,以現地縮尺模型試驗探討在不同邊界條件下靜態(static)與循環(cyclic)加載之樁土互制反應其差異性,協助台灣離岸風電的發展。
Electricity supply in Taiwan is mainly depending on non-renewable energy. To protect our environment for the purpose of sustainable development, research and develop renewable energy power generation technology is an important goal in nowadays. Offshore wind power technology is exactly one of it. Pile foundation is often used in offshore wind turbine. The main control in designing it is responses of lateral loading on the pile. Offshore wind turbine will be loaded repeatedly by winds and waves in lateral direction for a long time. Furthermore, soil in western seabed of Taiwan consists of weak silty sand and frequently hit by typhoons and earthquakes, which make lateral loading transfer mechanism in pile foundation complicate. We used a pile foundation model testing platform which can control the boundary stress and strain condition of the soil to simulate the in-situ stress condition of the soil. It was modified from the calibration chamber which is originally used on CPT tests. Taking advantage of the characteristic that the calibration chamber can control boundary conditions, we can maintain the specimen in Ko condition by controlling boundary strain during consolidation and provide boundary compensation stress during lateral loading, which are captured from numerical simulation, to simulate the semi-infinite domain situation for the purpose of reducing boundary effects. This study used mist pluviation to prepare a large, homogeneous, saturated silty sand specimen and the pile foundation model testing platform to simulate different boundary conditions, testing push-over and cyclic lateral loading on the long pile model. Discuss the difference of soil-pile interaction response from static and cyclic loading in different boundary conditions by the in-situ scale model in order to assist the development of Taiwan’s offshore wind power technology.
1. 王統立(2000)“高細料含量粉土細砂中CPT 之標定試驗”國立交通大學土木工程系,碩士論文。
2. 林承翰(2016)“以分層控制標度槽探討基樁於飽和粉土質砂中之側推行為”,國立成功大學土木工程學系,碩士論文
3. 張嘉偉(1997)“圓錐貫入試驗在粉砂中之標定”國立交通大學土木工程系,碩士論文。
4. 葉事義(2015)“以邊界應力控制試驗平台探討基樁側推之行為”,國立成功大學土木工程學系,碩士論文
5. 劉全修(2008)“台灣中南部粉土質細砂的壓縮性”國立交通大學土木
工程學系,碩士論文。
6. API, R. (2007). 2A-WSD 2007. “Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design,American Petroleum Institute. ”
7. Broms, B. B. (1964). “Lateral resistance of piles in cohesive soils.” J. Soil Mech. Found. Div., 90(2), 123-156.
8. Byrne, B. (2011). “Foundation Design for Offshore Wind Turbines”, Géotechnique Lecture.
9. Chang, W. J., Chen, J.F., Ho, H.C., and Chiu, Y.F. (2010), “In Situ Dynamic Model Test for Pile-supported Wharf in Liquefied Sand “, ASTM Geotechnical Testing Journal, Vol. 33/3.
10. Chang, Y. L., (1937). “Discussion on lateral pile-loading test by Feagin”, Transactions, ASCE.
11. Choo, Y. and Kim, D. (2015). “Experimental Development of the p-y Relationship for Large-Diameter Offshore Monopiles in Sands: Centrifuge Tests.” J. Geotech. Geoenviron. Eng., 10.1061/(ASCE)GT.1943-5606.0001373, 04015058.
12. Frost, J.D., Park, J.-Y., (2003). “A critical assessment of the moist tamping technique. ” Geotech. Test. J. ASTM 26 (1), 57-70.
13. Hetenyi, M., (1946). “Beams on Elastic Foundation,” University of Michigan Press, Ann Arbor, Michigan.
14. Holden, J.G., (1977),“The Calibration of Electrical Penetrometers in Sand,” Norwegian Geotech. Inst., Int. Rep. 52108-2(29pp).
15. Holden, J.C. (1991). “History of the first six CRB calibration chambers.” Proceedings, First International Symposium on Calibration Chamber Testing, Potsdam, New York, editor, A.-B. Huang, Elsevier, New York, 1-12.
16. Høeg, K., Dyvik, R., Sandbaekken, G., (2000). “Strength of undisturbed versus reconstituted silt and silty sand specimens.” J. Geotech. Geoenviron. Eng. ASCE 126 (7), 606-617.
17. Hsu, H.H., and Huang, A.B., (1998) “Development of an Axisymmetric Field Simulator for Cone Penetration Tests in Sand,” ASTM Geotechnical Testing Journal, Vol.21, No.4, pp. 348-355.
18. Huang, A.B., and Hsu, H.H. (2005). “Cone Penetration Tests under Simulated Field Conditions,” Geotechnique, Vol. No.5, pp. 345-354.
19. Huang, A.B., Huang, Y.T., (2007). “Undisturbed sampling and laboratory shearing tests on a sand with various fines content.” Soils Found. 47 (4), 771-781.
20. Huang, Y.T., Huang, A.B., Kuo, Y.C., Tsai, M.D., (2004). “A laboratory study on the undrained strength of a silty sand from Central Western Taiwan. Soil Dyn.” Earthq. Eng. 24 (9-10), 733-743.
21. Huang, A.B., Chang, W.J., Hsu, H.H., Huang, Y.J., (2015). “A mist pluviation method for reconstituting silty sand specimens.” Engineering Geology, 188, pp. 1-9.
22. Ishihara, K., (1993). “Liquefaction and flow failure during earthquakes.” Geotechnique 43 (3), 351-415.
23. Kuerbis, R., and Vaid, V.P. (1988). “Sand sample preparation - the slurry
deposition method.” Soil and Foundations 28(4): 107-118.
24. Lambe, T.W., (1951). “Soil Testing for Engineers.” John Willy & Sons, Inc., New York.
25. Lee, J., Paik, K., Kim, D., and Park, D. (2012). “Estimation of ultimate lateral load capacity of piles in sands using calibration chamber tests.”Geotech. Test. J., 35(4), 1-12.
26. Lin, H., Ni, L., Suleiman, M., and Raich, A. (2015). “Interaction between Laterally Loaded Pile and Surrounding Soil.” J. Geotech. Geoenviron. Eng., 141(4), 04014119.
27. Lo Presti, D., Pedroni, S., Crippa, V., (1992). “Maximum dry density of cohesionless soils by pluviation and by ASTM D 4253-83: a comparative study.” Geotech. Test. J. ASTM 15 (2), 180-189.
28. Long, J.H., and Vanneste, G.,(1994) “Effects of cyclic lateral loads onpiles in sand.” Journal of Geotechnical Engineering, ASCE, Vol. 120, NO.1, pp. 225-244.
29. McClelland B., and Focht J. A. Jr., (1958), “Soil Modulus for Laterally Loaded Piles.Transactions.” ASCE 123: pp. 1049-1086.
30. Mindlin, R. D., (1936), “Forces at a point in the interior of semi-infinite solid” Physics, Vol. 7, pp. 195-202.
31. Poulos, H. G., and Davis, E. H., (1980), “Pile Foundation Analysis and Design”, Wiley, New York.
32. Rankine, W. M. J. (1857), “On Stability of Loose Earth.” Philosophic Transactions of Royal Society, London, Part Ι, pp. 9-27.
33. Reese, L. C. and Matlock, H., (1956), “Non-dimensional Solutions for Laterally Loaded Piles with Soil Modulus Assumed Proportional to Depth.” Proceedings 8th Texas Conference on Soil Mechanics and Foundation Engineering, Austin, Texas, pp. 1~41.
34. Reese, L.C., Cox, W.R., and Koop, F.D., (1974), “Analysis of Laterally Loaded in Sand, Proceedings.” Six Annual OTC, Vol 2. Paper No. 2080, Houston, Texas.
35. Salgado, R., Mitchell, J.K., and Jamiolkowski, M. (1998), “Calibration chamber size effects on penetration resistance in sand.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 9, pp. 878-888.
36. Smith, T. D. (1987). “Pile horizontal modulus values.” J. Geotech. Eng.,
10.1061/(ASCE)0733-9410(1987)113:9(1040), 1040-1044.
37. Tcheng, Y. (1966). “Foundations profonds en milieu pulverulent a diverses compacities.” Annales de I’Institut Technique du Batiment et des Trvaux Publics, Sols et Foundations 54, 219-220.
38. Vaid, Y.P., Sivathayalan, S., Stedman, D., (1999). “Influence of specimen-reconstituting method on the undrained response of sand.” Geotech. Test. J. ASTM 22 (3), 187-195.
39. Wilson, D. (1998). “Soil-pile-superstructure interaction in liquefying sand
and soft clay.” Ph.D. dissertation, Univ. of California, Davis, Davis, CA.
40. Winkler, E. (1867). “Theory of elasticity and strength. Dominicus Prague.”
41. Yamamuro, J.A., Wood, F.M., (2004). “Effects of depositional method on the undrained behavior and microstructure of sand with silt.” Soil Dyn. Earthq. Eng. 24 (9-10), 751-760.