簡易檢索 / 詳目顯示

研究生: 吳庭安
Wu, Ting-An
論文名稱: 氧化釤摻雜於氧化鈰固溶體奈米粉末之製備與應用於燃料電池固態電解質之特性研究
Preparation and Characterization of Samaria-Doped Ceria Nano-Powder and Electrolyte Materials for Solid Oxide Fuel Cells
指導教授: 溫紹炳
Wen, Shaw-Bing
傅彥培
Fu, Yen-Pei
申永輝
Shen, Yun-Hwei
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 108
中文關鍵詞: 交流阻抗分析化學共沉法固態電解質奈米粉末固體氧化物燃料電池
外文關鍵詞: Nano-Powder, AC Impedance Spectroscopy, Solid Electrolyte, Chemical Coprecipitation, Solid Oxide Fuel cell
相關次數: 點閱:102下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 固態電解質為高氧離子導電率導體,利用固溶取代之性質,藉由晶粒中氧空缺來傳導氧離子。螢石結構為具有高氧離子導電率的結晶構造,未摻雜氧化鈰從室溫至熔點皆為穩定的螢石結構,且不需進行穩定化,其穩定性非常利於燃料電池之固態電解質。氧化鈰可摻雜異價陽離子,以增加氧離子空缺,提高氧離子導電率,具有比現行商業化的氧化釔安定化氧化鋯(YSZ)固態電解質還要高的離子導電率以及較低的活化能,極可能取代YSZ而成為固體氧化物燃料電池(Solid Oxide Fuel Cell,SOFC)的電解質材料。
    本研究以化學共沉法與共沸點蒸餾法製備Ce1-xSmxO2-x/2粉末,經過加壓成型、燒結後作為固態電解質,利用DTA、XRD、TEM、SEM、BET等分析設備,針對不同添加比例、燒結溫度與研磨時間,分析粉末及燒結體的結晶相、顯微結構、緻密度,以及使用交流阻抗分析法分析並模擬量測其離子導電率、活化能與晶界與晶粒的阻抗分析。
    本研究以Sm3+摻雜CeO2固態電解質,可有效提高氧離子導電率,且隨著添加量的增加,氧空缺濃度增加,導電率也隨之增加,而活化能隨之降低。Ce1-xSmxO2-x/2燒結體在x=0.2且球磨時間9小時,燒結溫度為1450℃之燒結體可達到99.9%之相對密度。且850℃時導電率為3.13×10-2S/cm。近一步觀察到晶粒與晶界離子傳導率之差異,並且從低到高溫時,離子傳導率由晶界主導改變至晶粒主導,最後再度改變至晶界主導。其原因是因為氧離子空位的有序化,缺陷締合以及靜電相互作用所造成的。

    A fuel cell is an electrochemical energy conversion device. It includes anode, cathode and electrolyte. The solid electrolyte is a conductor with the high oxygen ionic conductivity. A Solid Oxide Fuel Cell (SOFC) is regarded to be a highly efficient power-generation system for future applications. A typical high-temperature SOFC uses 8 mol% yttria-stabilized zirconia (YSZ) as an electrolyte, which is usually operated at a temperature as high as 800–1000℃, to obtain the required high ionic conductivity. However, such high temperatures will lead to a reaction between the components, thermal degradation, or thermal expansion mismatch. In order to reduce the operation temperature from 1000 to 800℃ or even lower, doped ceria has been considered as the solid electrolyte for moderate-temperature SOFCs. The conductivity maximum in zirconia has been correlated with the minimum dopant level necessary to stabilize the high-temperature face-centered cubic (F.C.C.) phase. Contrary to pure YSZ, CeO2 has a fluorite structure and oxygen vacancies as predominant ionic defects. Pure CeO2 ceramic is a poor oxide ion conductor. However, the ion conductivity of CeO2 can be significantly improved upon substitution dopant ion and oxygen vacancy.

    In this research, first of all, we applied the method of “Chemical Coprecipitation” to produce SmxCe1-xO2-x/2 nano-scale powder. Secondly, after pressurizing and sintering, it would become solid electrolyte. Then, we applied DTA, XRD, TEM, SEM, and BET to observe sample with different adding proportion. We also analyzed nano-scale powder. It includes crystal phase analyzing of sintered substances, microstructure analyzing, and fineness measuring of powder. In addition, we applied AC-method to measure its impedance and ionic conductivity. For Sm0.8Ce0.2O1.9 ceramic sintered at 1500℃ for 5 hours, the bulk density was over 99.9% of the theoretical density. The maximum ionic conductivity, 3.13×10-2 Scm-1 at 850℃ with the minimum activation energy, Ea=0.74 eV, was found in Sm0.8Ce0.2O1.9 ceramic solid electrolyte.

    摘要 I Abstract II 誌謝 III 總目錄 IV 表目錄 VIII 圖目錄 X 1 第一章 緒論 1 1.1 前言 1 1.2 燃料電池簡介 3 1.2.1 燃料電池關鍵材料與元件 3 1.2.2 燃料電池具備之特性 4 1.3 研究動機與目的 5 1.4 前人研究 6 2 第二章 理論基礎 10 2.1 燃料電池的基本原理 10 2.1.1 燃料電池的分類及應用範圍 10 2.2 固體氧化物燃料電池原理及特點 13 2.2.1 固體氧化物燃料電池的構造及材料選擇 15 2.2.2 固體氧化物燃料電池的特點 17 2.3 固態電解質之結構 18 2.3.1 螢石結構 19 2.3.2 鈣鈦礦結構 22 2.4 電解質粉末的製備 22 2.4.1 膠體製備 22 2.4.2 活性粉末理論 24 2.4.3 凝聚現象 25 2.4.4 膠體的凝聚機制 26 2.4.5 Amyl-gel的凝聚機制 27 2.4.6 粉末的粉碎與磨潤學(Tribology) 30 2.5 粉末的燒結性 31 2.5.1 粉體的性質 31 2.5.2 成形體的性質 32 2.6 燒結理論 34 2.6.1 燒結過程 34 2.6.2 奈米陶瓷粉末燒結緻密化模型 37 2.7 交流阻抗分析 37 2.7.1 一般電化學之交流阻抗分析 39 2.7.2 電化學系統不受電極上反應活性的影響 41 3 第三章 實驗步驟及方法 44 3.1 Ce1-XSmXO2-X/2粉末的合成 44 3.1.1 熱差分析(DTA)及熱重分析(TG) 46 3.1.2 X光繞射分析(X-ray diffraction analysis,XRD) 46 3.1.3 掃描式電子顯微鏡(SEM) 48 3.1.4 穿透式電子顯微鏡(TEM) 48 3.1.5 比表面積測定(BET) 48 3.2 Ce1-XSmXO2-X/2試片的成形與燒結 49 3.2.1 導電率分析 49 3.2.2 活化能分析 51 3.2.3 顯微結構分析 51 3.2.4 燒結密度分析 52 4 第四章 結果與討論 53 4.1 合成粉末與燒結體之性質分析結果 53 4.1.1 Ce1-XSmXO2-X/2膠體型態及熱分析結果 53 4.1.2 Ce1-XSmXO2-X/2粉末的X光繞射分析 54 4.1.3 Ce1-xSmxO2-x/2粉末比表面積分析結果 59 4.1.4 Ce1-xSmxO2-x/2粉末的燒結體表面X光繞射分析 60 4.2 Ce1-xSmxO2-x/2粉末及燒結體的顯微結構分析 63 4.2.1 Ce1-xSmxO2-x/2粉末的顯微結構分析 63 4.2.2 Ce1-xSmxO2-x/2燒結體的顯微結構分析 68 4.3 燒結密度 79 4.4 離子導電率性質分析 82 4.5 活化能分析 88 4.6 前人研究比較表 97 5 第五章 結論與建議 100 5.1 結論 100 5.2 建議與未來方向 102 6 參考文獻 103

    1. 黃鎮江, “燃料電池”, 全華科技圖書股份有限公司 (2003)
    2. Minh N. Q., “Science and Technology of Ceramic Fuel Cells”, Elsevier Science B. V., (1995)
    3. Appleby A. J. and F. R. Foulkes, “Fuel cell hand book”, Van Nostrand Reinhold (1989)
    4. Gregor H., “Fuel cell technology hand book”, CRC Press (2002)
    5. Geller S., “Solid Electrolytes”, Springer-Verlag (1977)
    6. Hagenmuller P. and W. V. Cool, “Solid electrolytes general principles, characterization, materials, applications”, Academic Press (1978)
    7. Inaba H. and Tagawa H., “Ceria-based solid electrolytes”, Solid State Ionics, 83, 1~16 (1996)
    8. Yahiro H., and Koichi E.,“Electrial properties and mircostructure in the system ceria-alkaline earth oxide”, Journal of Materials Science, 23, 1036~1041 (1988)
    9. G.E. Blomgren, Eveready Battery Co. , “Positive Electrode Materials for Nonaqueous Secondary Batteries” Role of Ceramics in Advanced Electrochemical Systems , 103~112 , The American Ceramic Society , (1996)
    10. W. Huang, P. Shuk, “Properties of sol-gel prepared Ce1-xSmxO2-x/2 solid electrolytes”, Solid State Ionics, 100, 23~27 (1997)
    11. J. Y. Chang-Jean, W.S. Su and M. H. Huang, “Sintering of 3mol% Yttria-doped Zirconia Powders Prepared by Water or 1-Octanol Extraction Variant of Sol-gel Process”, Journal of Materials Science and Engineering, Vol. 32, No 4, pp. 179-185 (2000)
    12. Yunfeng Gu, Gang Li,“Sintering and electrical properties of coprecipitation prepared Ce0.8Y0.2O1.9 ceramics”,Materials Research Bulletin 35 297-304 (2000)
    13. Dabing L., Jiandong H. and Jianshe L., “Synthesis of nanometer (CeO2)0.9-x(GdO1.5)x(Sm2O3)0.1 powders by sol-gel low temperature combustion”, Journal of the Chinese Ceramic Society, 29, 340~343 (2001)
    14. Shaowu Z, Qingxi F, Yin L., et al.“Novel azeotropic distillation process for synthesizing nanoscale powders of yttria doped ceria electrolyte.”,Materials Letters, 47 ,351–355 (2001)
    15. Jung G. B., Huang M. H., “Preparation of samaria-doped ceria for solid-oxide fuel cell electrolyte by a modified sol-gel method”, Journal of Materials Science, J. Am. Ceram. Soc,36 5839-5844 (2001)
    16. Ranran P, Changrong X, “Sintering and electrical properties of (CeO2)0.8(Sm2O3)0.2 powders prepared by glycine-nitrate process” Materials Letters 56 1043-1047 (2002)
    17. Shaowu Z., “Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells”, Journal of Power Sources, 115, 44~48 (2003)
    18. 黃鼎翰, “以低溫水熱法合成奈米級釤及鉍摻雜鈰系固態氧化物燃料電池電
    解質與其電化學性質之研究”, 台灣科技大學碩士論文(2004)
    19. 張晏韶, “以微波加熱燃燒合成法製備異質摻雜CeO2固溶體粉末應用於固態氧化物燃料電池中固態電解質之研究”, 成功大學碩士論文(2004)
    20. Matthew Price, Junhang Dong, and Xuehong Gu, “Formation of YSZ–SDC Solid Solution in a Nanocrystalline Heterophase System and Its Effect on the Electrical Conductivity“, Journal of the American Ceramic Society,88[7],1812~1818(2005)
    21. Taro Shimonosono, Yoshihiro Hirata, and Soichiro Sameshima, “Electronic Conductivity of La-Doped Ceria Ceramics”, Journal of the American Ceramic Society,88[8],2114~2120(2005)
    22. Yen-Pei Fu, Shaw-Bing Wen and Chi-Hua Lu, “Preparation and Characterization of Samaria-Doped Ceria Electrolyte Materials for Solid Oxide Fuel Cells”, Journal of the American Ceramic Society, 91[1], 127~131(2008)
    23. Jing Sui and Jiang Liu, “Slip-Cast Ce0.8Sm0.2O1.9 Cone-Shaped SOFC”, Journal of the American Ceramic Society, (2008)
    24. Prabhakar Singh and Nguyen Q. Minh, “Solid Oxide Fuel Cells: Technology Status”, International Journal of Applied Ceramic Technology, 1[1], 5~15(2004)
    25. 黃銘賢, “以Doped CeO2為固態電解質的陶瓷燃料電池”, 國科會研究計畫報告 (2001)
    26. Sammes N. M., G. A. Tompsett, H. Näfe and F. Aldinget, “Bismuth based oxide electrolytes structure and ionic conductivity”, Journal of the European Ceramic Society, 19, 1801~1826 (1999)
    27. Mogensen, M., Sammes, N. M., Tompsett, G.A., “Physical, chemical and electrochemical properties of pure and doped ceria.”, Sold State Ionics, 129:63~94(2000)
    28. Kai J. and P. Cheng, “Sol-Gel synthesis and porperties of GdxCe1-xO2-x/2 solid solutions”, Chemical Journal of Chinese Universities, 22, 1279~1282 (2001)
    29. Kai J. and Z. Xiuying, “Solid electrolytes used for SOFC”, Chinese Journal of Rare Metals, 25, 121~125 (2001)
    30. Cook. R. L., “Perovskite solid electrolytes for intermediate temperature solid oxide fuel cells”, Journal of the Electrochemistry Society, 137, 3309~3310 (1990)
    31. 汪建民主編, “陶瓷技術手冊(上)、(下)”, 中華民國粉末冶金協會, 台北市。(1999).
    32. I. J. Mccolm and N. J. Clark, in “Forming, Shaping and Working of High-performance Ceramics”, published by Chapman and Hall, New York.(1989)
    33. H. Rumpf and H. Schubert, in “Ceramic Processing before Firing”edited by G. Y. Onoda, and L. L. Hench, published by John Wiley & Sons, 357(1978)
    34. M. S. Kaliszewski and A.H. Heuer, J. Am. Ceram. Soc, 75 1504-1509 (1990)
    35. S. Taruta, K. Kitajima, N. Takusagawa, K. Okada and N. Otsuka, “Influence of Coarse Particle Size on Packing and Sintering Behavior of Bimodal Size Distributed Alumina Powder Mixtures”, Journal of the Ceramic Society of Japan, 101 [5], 583-588. (1992)
    36. J. P. Smith and G. L. Messing, “Sintering of Bimodally Distributed Alumina Powders”, J. Am. Ceram. Soc., 67 [4], 238-242. (1984)
    37. T. Kimura, Y. Matsuda, M. Oda and T. Yamaguchi, “Effects of Agglomerates on the Sintering of Alpha-Al2O3”, Ceram. International, 13, 27-34. (1987)
    38. 陳家榮, “Advanced Ceramic Powders and Nano Ceramic Powders”, 第一屆海峽兩岸粉體製備科學與技術研討會 (2003)
    39. Paul Bowen and Claude Carry, “From powders to sintered pieces: forming, transformations and sintering of nanostructured ceramic oxides”, Powder Technology, V 128, No. 2-3, 248-255. (2002)
    40. M. F. Ashby, “A First Report on Sintering Diagrams”, Acta Metal., 22, 275-289 (1974).
    41. P.L.Chen and I.W.Chen,“Sinterimg of Fine Oxide Powder:II,Sintering Mechanisms”, J. Am. Ceram. Soc.,80[3],pp.637~645(1997)
    42. 林昱志, “質子交換膜型燃料電池組抗之分析”, 國立成功大學碩士論文(2001)
    43. E. Warburg, “Drud. Ann .der Physik”, vol. 6, p. 125, (1901)
    44. J. E. B. Randles, “Disc Faraday Soc., vol. 1, p. 11 (1947).
    45. M. Sluyters-Rehbach, J. H. Sluyters, “Electroanalytical Chemistry”, Marcel Dekker, New York, vol. 4, (1970).
    46. C. M. Brett, Ana M. O. Breet, “Electrochemistry-Principles, Methods, and Applications”, Oxford, New York, p. 405 (1993).
    47. 孫千媖, “鹼金屬離子對薄膜電池氧化物電解質缺陷結構之影響”, 碩士論文 (2001)
    48. G. B. Balazs, R. S. Glass, “AC-Impedance Studies Rare-Earth-Oxides and Their Application to Solid Oxide Fuel-Cells”, Solid State Ionics, 52, 165 (1995)
    49. Xiao-Dong Zhou, Wayne Huebner, Igor Kosacki,, and Harlan U. Anderson, “Microstructure and Grain-Boundary Effect on Electrical Properties of Gadolinium-Doped Ceria”, J. Am. Ceram. Soc., 85 [7] 1757–62 (2002).
    50. Christie G. M., F. P. F Van Berkel, “Microstructure-ionic conductivity relationships in ceria-gadolinia electrolytes”, Solid State Ionics, 83, 17~27 (1996)
    51. Hideaki I. , “Sintering behaviors of ceria and Gadolinia-doped ceria”, Solid State Ionics, 106, 263~268 (1998)
    52. 劉旭俐、馬峻峰,“固體氧化物燃料電池材料的研究進展”,硅酸鹽通報,1,24~29 (2001)
    53. 任引哲,“稀土複合氧化物的電導及在SOFC中的應用”,化學研究,12,59~64 (2001)
    54. Dixon J. M. and L. D. Lagrange, “Electrical resistivity of stabilized zirconia of elevated temperatures”, Journal of the Electrochemistry Society, 110, 276~280 (1963)
    55. Strickler D. W. and W. G. Carlson, “Ionic conductivity of cubic solid solutions in the system CaO-Y2O3-ZrO2”, Journal of the American Ceramic Society, 47, 122~127 (1964)
    56. M.D. Kingery, D.R. Uhlmann, et al. “Introduction to cermics.”, 2nd Edition, John Wiley&Sons, New York (1976)

    下載圖示 校內:2009-07-03公開
    校外:2011-07-03公開
    QR CODE