簡易檢索 / 詳目顯示

研究生: 何廣福
He, Guang-Fu
論文名稱: 方向性凝固之研究
The Study Of Directional Solidification
指導教授: 趙隆山
Chao, Long-Sun
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 130
中文關鍵詞: 方向性凝固單晶晶粒大小與型態
外文關鍵詞: Directional Solidification, Single Crystal, Morphology and Size of Grain
相關次數: 點閱:91下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   一般的鑄造過程不易控制凝固結構之形態,最多只能改變晶粒大小,而方向性凝固與單晶成長均屬於難度高之鑄造技術,需使用適當的鑄造機制,來控制凝固結構形態,其中以單晶之製程最為困難,方向性凝固則次之,不過方向性凝固是單晶製程之基礎。針對方向性凝固,本文設計五種不同之鑄造實驗模式,探討於此五種模式之凝固微結構與鑄件軸向溫度分布之相關性。於實驗研究中,以錫鉛合金作為鑄件材料,使用光學顯微鏡觀察凝固微結構以及計算鑄件的橫截面晶粒數目,並利用熱偶線與溫測擷取系統量測鑄件軸向之溫度分布。本文經由橫截面與縱切面之顯微組織觀察、橫截面晶粒數及鑄件軸向溫度分布,分析於五種實驗模式中,晶粒型態之大小跟凝固時之熱傳環境的關聯性,由其分析結果,可掌握方向性凝固之控制機制。

     To control the morphology of solidifying microstructure is difficult in a casting process, in which only the grain size can be easily changed. To perform advanced casting techniques such as directional solidification and the growth of single crystal, a proper casting mechanism is needed to control solidifying microstructures. The fabricating technique of single crystal is based on that of directional solidification. Among these solidification processes, the growth of single crystal is the most difficult one and directional solidification the second. To obtain directional solidification, in this paper, five different kinds of experiment models are designed to investigate the resulting microstructures and their relationships with the axial temperature profiles. In this study, Pb-Sn alloy is used as the testing material and the optical microscope is utilized to observe the solidifying microstructures. The grain number of the lateral cross section is counted and thermal couples are used to measure the temperatures along the axial direction of the cylindrical casting. From the microstructures on the lateral and longitudinal cross sections, the grain number and axial temperature distributions, the relationship among the morphology and size of grain and the solidifying environment is investigated for those five experimental models. From the analysis results, the controlled mechanism of directional solidification can be regulated.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 第二章 凝固理論模式 6 2-1 凝固過程 6 2-2 凝固之顯微結構 7 2-2-1成核階段 7 2-2-2 成長與侵犯模式 8 2-3 金屬之晶粒成長形狀 9 2-4 方向性凝固(Directional Solidification, DS)之模式 9 2-5實驗模式 11 第三章 實驗設備與方法 12 3-1實驗設備 12 3-1-1 熱電偶點焊機與氫氧焊接機 12 3-1-2 砂模設備 13 3-1-3 熔解爐 13 3-1-4 溫度擷取設備與量測方式 13 3-1-5 加熱及溫度控制設備 14 3-1-6 冷激銅盒 15 3-2 方向性凝固實驗之設計 16 3-2-1 砂模模式Case 1 16 3-2-2 應用直立保溫模於砂模模式Case 2 17 3-2-3 直立保溫模之模式Case 3 17 3-2-4 應用加熱裝置於直立保溫模之模式Case 4 18 3-2-5 配合加熱設計, 應用加熱裝置於直立保溫模之模式Case 5 19 3-3 觀察金相顯微組織之實驗 20 3-3-1 金相觀察之實驗設備 20 3-3-2 金相觀察之實驗步驟與方法 21 3-4 實驗數據整理與計算 23 第四章 結果與討論 26 4-1 金相顯微組織觀察 26 4-1-1 鑄件橫截面 26 4-1-2 鑄件縱切面 29 4-2鑄件之溫度分佈 33 4-2-1 鑄件的暫態溫度量測 33 4-2-2溫度分佈與晶粒成長 35 第五章 結論 37 參考文獻 39 附錄A 束縳成長(Constrained Growth) 94 附錄B 實驗模式代號 95 附錄C 應用加熱裝置於直立保溫模模式Case 5之設備 96 附錄D 鑄件試片取樣位置 99 附錄E 晶粒數取樣方式 101

    [1] Oldfield, W., “Transactions of The Metallurgical Society of AIME, ” Vol.59, pp.945.

    [2] Stefanescu, D.M., and Trufinescu, S., Metalkd,Z., 65(1974), pp.610.

    [3] Fredriksson,H., and Svensson, I.L., “The Physical Metallurgy of Cast Iron, ” North-Holland, New York, USA, (1984).

    [4] Stefanescu,D.M., and Kanetkar,C., “Modeling of the Solidification of Casting, ” Journal of Metal, Vol.37, pp.A42-A42(1985).

    [5] Su, K.C., Ohnaka, I., Yaunauchi, I., and Fukusako, T., “Computer Simulation of Solidification of Nodular Cast Iron, ” North Holland, New York, USA, pp.181(1984).

    [6] Thevoz, Ph., Desbiolles, J.L., and Rappaz, M., “Modeling of Equiaxed Microstructure Formation in Casting, ”Metallurgical Transactions A, Vol.20A, pp.311-322(1989).

    [7] Rhines, F.N., Craig, K.R., and Rousse,D.A., “Measurement of Average Grain Volume and Certain Topological Parameters by Serial Section Analysis, ” Metallurgical Transactions A, Vol.7A, pp.1729-1734(1976).

    [8] Rappaz, M., Thevoz, P., “Solute Diffusion-Model for equiaxed dendritic growth, ” ACTA Metallurgical, Vol.35, pp2929-2933, 1987.

    [9] Rappaz, M., and Stefanescu, D.M., ”Modeling of equiaxed Primary and eutectic Solidification, ” Journal of Metals, Vol.39, pp.A62-A62(1987).

    [10] Rappaz, M., David,S.A., Vitek, J.M., and Boatner, L.A., “Analysis of Solidification Microstructures in Fe-Ni-Cr Single-Crystal Welds, ”Metallurgical Transactions A, Vol.7A, pp.1729-1782(1990).
    [11] Rappaz, M., and Gandin, Ch.-A., ”Probabilistic Medeling of Microstructure Formation In Solidification Processes, ” Acta Metal, Vol.41, pp.345-360(1993).

    [12] Gandin,Ch.-A., Rappaz, M., and Tintillier, R., “Three-Dimension Probabilistic Simulation of Solidification Grain Structures Application to Superalloy Precision Castings, ” Metallurgical Transactions A, Vol.24A, pp.467-479(1993).

    [13]杜武昌, “微觀之凝固模式分析, ”碩士論文,國立成功大學工程科研究所,1995。

    [14] William F. Smith原著;李春穎,許煙明,陳忠仁 譯,材料科學與工程,高立圖書,台北市,pp.124,民83年。

    [15]楊哲人,金屬材料的結構與特性,科學月刊,0283期,民82年7月

    [16] Kurz , W., and Fisher, D.J., “Fundamentals of Solidification, ”pp.7,163

    [17]林盈佐, “凝固顯微組織與模式分析”,國立成功大學工科所碩士論文 (1998)。

    [18]鑄造手冊 第一冊 鑄造技術之基礎,中華民國鑄造學會,pp.23,民86年12月。

    [19] “Standard Methods for Estimationg the Average Grain Size of metals,”Annual Book of ASTM Standards, vol,03,ASTM,USA,pp.120-156,(1984)

    [20]鄭盟傑, “鑄模與鑄件間界面熱傳分析”,國立成功大學工科所碩士論文 (2004)。

    [21]何堃森, “引擎渦輪段精密翼形件之鑄造與鍍層技術及製程/微組織模擬研究”,國立成功大學材料科學及山程學系博士論文(2004)。

    [22]仲銘華 譯, “鑄造金屬工藝學”,復漢出版社,民74年10月。

    [23]林震、洪天送、李世榮、梁添財, “機械工程試驗(一) 材料實驗”,新科技書局 77年2月。

    [24]雷天壽, “機械工程試驗(一)”,全華科技圖書,民73年7月。

    [25] Kurz,W., “Microsegregation in Rapidly Solidified Ag-15wt-percent-Cu, ”Journal of Crystal Growth, Vol.91, pp.123-125(1988).

    [26] Pocheau, A., and Georgelin, M., ”Cell tip undercooling in directional solidification,” Journal of Crystal Growth 206, pp.215-229 (1999).

    [27] Fedorov, O.P., ”Cellular pattern during directional growth of a single crystal in a quasi-two-dimensional system,” Journal of Crystal Growth 156, pp.473-479 (1995).

    [28] Ming Li* and Takasuke Mori and Hajime Iwasaki, “Effect of solute convection on the primary arm spacings of Pb-Sn binary alloys during upward directional solidification,” Materials Science and Engineering A265, pp.217-223 (1999).

    [28] Ming Li* and Takasuke Mori and Hajime Iwasaki, “Effect of solute convection on the primary arm spacings of Pb-Sn binary alloys during upward directional solidification,” Materials Science and Engineering A265, pp.217-223 (1999).

    [29] Pierre Haldenwanga and Rahma Guerinb,*, “Transverse thermal effects in directional solidification ,” Journal of Crystal Growth 244, pp.108-122 (2002).

    [30] OTAVIO L. ROCHA and CLAUDIO A. SIQUEIRA and AMAURI GARCIA, “Heat Flow Parameters Affecting Dendrite Spacings during Unsteady-State Solidification of Sn-Pb and Al-Cu Alloys, ” Metallurgical and materials transactions A, Vol 34A, pp.995-1006 (2003).

    [31] MARTORANO, M.A., and C. BECKERMANN and Ch.-A. GANDIN, “A Solutal Interaction Mechanism for the Columnar-to-Equiaxed Transition in Alloy Solidification, ” Metallurgical and materials transactions A, Vol 34A, pp.1657-1673 (2003).

    [32] JUN HUI and TIWARI, R., and WU, X., and TEWARI ,S.N., and TRIVEDI, R., “Primary Dendrite Distribution and disorder during Directional Solidification of Pb-Sn Alloys, ” Metallurgical and materials transactions A, Vol 33A, pp.3499-3510 (2002).

    下載圖示 校內:立即公開
    校外:2005-09-08公開
    QR CODE