| 研究生: |
黃語彤 Huang, Yu-Tung |
|---|---|
| 論文名稱: |
高樓配置半主動模糊控制LSCMD之即時複合實驗驗證 Real-Time Hybrid Testing of MDOF Systems with Semi-Active Fuzzy-controlled LSCMD |
| 指導教授: |
朱世禹
Chu, Shih-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 150 |
| 中文關鍵詞: | 槓桿式勁度可控質量阻尼器 、半主動控制 、模糊控制律 、線性二次調節器 、最小能量控制法 、即時複合實驗 、底層挑高結構 |
| 外文關鍵詞: | Leverage-type Stiffness Controlled Mass Damper, Semi-Active Control, Fuzzy Logic Control, Real-Time Hybrid Testing, Linear Quadratic Regulator, Least Energy Control Method, Soft-Story Building |
| 相關次數: | 點閱:232 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
槓桿式勁度可控質量阻尼器(Leverage-type Stiffness Controllable Mass Damper,LSCMD),藉由改變槓桿支點位置調整質量阻尼器勁度,提高被動調諧質量阻尼器的適應性。槓桿支點可經由不同控制律如線性二次調節器(Linear Quadratic Regulator, LQR)或最小能量控制法(Least Energy Control Method, LECM)來設計控制。然而上述控制律需要正確數值模型及參數,透過計算最佳化指標來進行設計與應用。本研究利用模糊控制貼近人類思考的特性,並配合前人透過LQR及LECM控制之LSCMD實驗數據,歸納而得之模糊控制規則庫,透過多自由度主結構配置半主動模糊控制LSCMD之架構,基於等高結構及底層挑高結構兩種主結構設定,以此探討多自由度主結構之模糊控制效能。本文亦進行上述架構之即時複合實驗驗證,數值模擬與實驗結果相當吻合,驗證半主動模糊控制LSCMD應用於不同主結構時之可行性。
Leverage-type stiffness controlled mass damper (LSCMD) is an effective device for vibration suppression. The damper stiffness can be alert through adjusting the pivot position that is appropriately designed and controlled via different control laws such linear quadratic regulator (LQR) or least energy control method (LECM) to enhance the robustness of the traditional tuned mass damper functionality. However, the above control laws require correct numerical models and parameters, and are designed and applied through on-line or off-line optimization processes. To resolve this problem a real-time fuzzy-controlled semi-active LSCMD is proposed in this study. The fuzzy logic controller (FLC) that closely mimics the characteristics of human thinking is adopted and cooperated with the fuzzy control rules (FCRs) based on observing the hysteresis loops of experimental data of LSCMD controlled by LQR and LECM. The architecture of semi-active fuzzy control LSCMD is configured by multi-degree-of-freedom (MDOF) main structure. Based on the two main structure settings of regular-story and soft-story buildings, the fuzzy control efficiency of MDOF main structure is discussed. This study also carries out the real-time hybrid testing verification of the above structure. The numerical simulation is in good agreement with the experimental results, and the feasibility of applying semi-active fuzzy control LSCMD to different main structures is verified.
參考文獻
[1] Frahm, H., “Device for Damping Vibration of Bodies”, US Patent, No. 989958, (1909).
[2] Lin, C.C., Hu, C.M., Wang, J.F., Hu, R.Y., “Vibration Control Effectiveness of Passive Tuned Mass Dampers”, Journal of the Chinese Institute of Engineers, Vol. 17, No. 3, pp. 367-376, (1994).
[3] McNamara, R. J., ”Tuned Mass Dampers for Buildings”, Journal of the Structural Division (ASCE), Vol. 103, No. 9, pp. 1785-1798, (1977).
[4] Wiesner, K. B., ”Tuned Mass Dampers to Reduce Building Wind Motion”, Convention and Exposition (ASCE), Boston, Mass., April 2-6, (1979).
[5] Den Hartog, J.P., “Mechanical Vibrations, 4th edn”, McGraw Hill, New York, (1956).
[6] Uang, C.M., Bertero, V.V., “Evaluation of Seismic Energy in Structures” , Earthquake Engineering & Structural Dynamics., Vol. 19, No. 1, pp. 77.90, (1990).
[7] Wong, K.K.F., “Seismic Energy Dissipation of Inelastic Structures with Tuned Mass Dampers”, Journal of Engineering Mechanics, Vol. 134, No. 2 , pp. 163.172, (2008).
[8] Warburton G.B., “Optimum Absorber Parameters for Various Combinations of Response and Excitation Parameters”, Earthquake Engineering and Structural Dynamics, Vol. 10, No. 3, pp.381-401, (1982).
[9] Chu, S.Y., Soong, T.T., Reinhorn, A.M., “Active, Hybrid and Semi-active Structural Control: A Design and Implementation Handbook” ,John Wiley & Sons, Inc., New York, (2005).
[10] Soong, T.T., “Active Structural Control: Theory and Practice”, John Wiley & Sons, Inc., New York, (1990).
[11] Sack, R.L., Patten, W.N., “Semi-active Hydraulic Structural Control”, Proceedings of the International Workshop on Structural Control, Honolulu, Hawaii, USC Publication CE-9311, pp. 417-431, (1993).
[12] Symans, M.D., Constanionu, M.C., “Semi-active Control Systems for Seismic Protection of Structures: A State-of-the-art Review”, Engineering Structures, Vol. 21, No. 6, pp. 469-487, (1999).
[13] Hrovat, D., Barak, P., Rabins, M., “Semi-Active versus Passive or Active Tuned Mass Dampers For Structural Control”, Journal of Engineering Mechanics (ASCE), Vol. 109, No. 3, pp. 691-705, (1983).
[14] Varadarajan, N., Nagarajaiah, S., “Wind Response Control of Building with Variable Stiffness Tuned Mass Damper Using Empirical Mode Decomposition/Hilbert Transform”, Journal of Engineering Mechanics (ASCE), Vol. 130, No. 4, pp. 451-458, (2004).
[15] Nagarajaiah, S., “Hardening Duffing Oscillator Attenuation using a nonlinear TMD, a semi-active TMD and multiple TMD” S Journal of Sound and Vibration, Vol.322, No.4, pp. 674-686, (2013)
[16] Chey, M. H., Chase, J. G., “Semi-active Tuned Mass Damper Building systems: Design”, Earthquake Engineering and Structural Dynamics, Vol. 39, No. 2, pp. 119-139,(2010).
[17] Chey, M. H., Chase, J. G., “Semi-active tuned mass damper building systems: Application”, Earthquake Engineering and Structural Dynamics, Vol. 39, No. 1, pp. 69-89,(2010).
[18] Alka, Y. Pisal. , “DYNAMIC RESPONSE OF STRUCTURE WITH SEMI-ACTIVE TUNED MASS FRICTION DAMPER”, International Journal of Structural and Civil Engineering Research, Vol. 2, No. 1 ,(2013)
[19] Lu, L.Y., “Predictive control of seismic structures with semi-active friction dampers”, Earthquake Engineering and Structural Dynamics, Vol.33, No. 5, pp.647-668. ,(2004)
[20] Lu, L.Y., Hsu, C.C., Yeh, S.W., “A Leverage-type Semi-active Isolation System for Seismic Structures in Near-fault Regions (in Chinese)” Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol. 21, No. 3, pp. 319-338,(2009).
[21] Lu, L.Y., Lin, T.K., Yeh, S.W., “Experiment and Analysis of A Leverage-type Stiffness Controllable Isolation System for Seismic Engineering” Earthquake Engineering and Structural Dynamics, Vol. 39, No. 15, 1711-1736, (2010).
[22] Lu, L.Y., Lin, G.L., Kuo, T.C., “Stiffness controllable isolation system for near-fault seismic isolation” Earthquake Structures, Vol. 30, No. 3, 747-765,(2008).
[23] Chu, S.Y., Lin, C.C., Chung, L.L., Chang, C.C., Lu, K.H., “Optimal Performance of Discrete-time Direct Output-feedback Structural Control with Delayed Control Forces”, Structrual Control and Health Monitoring, Vol. 15, No. 1, pp. 22-42, (2008).
[24] Chu, S.Y., Yeh, S. W., Lu, L.Y., Peng, C.H., “A leverage-type stiffness controllable mass damper for vibration mitigation of structures”, Structrual Control and Health Monitoring, Vol. 24, No. 4,pp.9-21,(2016)
[25] Sadek F, Mohraz B, Taylor AW, Chung RM. “A method of estimating the parameters of tuned mass dampers for seismic applications. ” Earthquake Engineering & Structural Vol. 26, No 6,pp.617–635.(1997)
[26] Zadeh, L. A., “Fuzzy Sets”, Informat. Control, Vol.8, pp.338-353, 1965.
[27] Zadeh, L. A., “Outline of a New Approach to the Analysis of Complex Systems and
De-cision Processes”, IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-3, NO. 1, JANUARY ,(1973).
[28] 李文誠,「勁度可控式質量阻尼器之減振研究」,國立成功大學土木工程研究所,碩士論文 (2009)。
[29] 盧煉元、林錦隆,中華民國發明專利,專利名稱:可控式隔震系統。專利字號:發明第I308610號,專利證書日期:98年4月11日,專利期限:民國2009年4月11日至2025年10月27日止。
[30] 盧煉元、郭子敬、林錦隆,「勁度可控式滑動隔震系統」,中國土木水利工程學刊,第十八卷,第二期,265-278頁 ( 2006 )。
[31] 侯佳玟,「最佳化時間延遲補償之擬混合型調諧質量阻尼器於結構振動控制之研究」,國立成功大學土木工程研究所,碩士論文(2007)。
[32] 彭致華,「槓桿式勁度可控質量阻尼器於結構減振之應用與實驗驗證」,國立成功大學土木工程研究所,碩士論文(2010)。
[33] 黃昭勝,「結構半主動模糊控制基因演算法之研究」,國立成功大學土木工程研究所,碩士論文(2006)
[34] 陳瑀涵,「以類神經網路模擬模糊滑動模式之主動結構控制」,中原大學土木工程學系,碩士論文(2005)
[35] 林震宇,「可控式摩擦隔震系統之振動台」,國立高雄第一科技大學營建工程研究所,碩士論文(2009)
[36] 鄭榮杰,「槓桿式半主動摩擦阻尼器於結構減震應用之實驗分析」,國立高雄第一科技大學營建工程系,碩士論文 (2015)
[37] 張洵,「模糊控制律於勁度可控式隔震系統之實驗研究」,國立高雄第一科技大學營建工程研究所,碩士論文(2012)
[38] 陳祈丞,「模糊控制律於勁度可控質量阻尼器系統之實驗驗證」,國立成功大學土木工程研究所,碩士論文(2015)
[39] 彭致華,「槓桿式勁度可控質量阻尼器於結構減振之應用與實驗驗證」,國立成功大學土木工程研究所,碩士論文 ( 2010 )
[40] 簡誌德,「最小輸入能量法於半主動質量阻尼器系統之應用研究」,國立成功大學土木工程研究所,碩士論文 ( 2011 )
[41] 葉士瑋,「最小輸入能量法於勁度可控式隔震系統之應用研究」,國立高雄第一科技大學營建工程研究所,碩士論文(2009)。
[42] 林鼎傑,「最小能量控制律於槓桿式勁度可控質量阻尼器系統之實驗驗證」,國立成功大學土木工程研究所,碩士論文(2014)。
[43] 王健,「變曲率滑動隔震防制近斷層震波之實驗與分析」,國立高雄第一科技大學
營建工程研究所,碩士論文(2006)。
[44] 許哲崙, 「槓桿式勁度可控質量阻尼器之效能評估與實驗驗證」,國立成功大學
土木工程研究所,碩士論文(2016)
[45] 高崇銘, 「配置LSCMD多自由度系統採用最小能量控制律之即時複合試驗」,國立成功大學土木工程研究所,碩士論文(2017)
[46] 呂仲岳, 「應用即時複合實驗進行配置PFCMD多自由度系統控制參數之最佳化探討」,國立成功大學土木工程研究所,碩士論文(2017)
[47] 臺北市建築物內樓板挑空設計之審查原則
[48]http://zh.wikipedia.org/wiki/%E7%9B%A7%E8%8F%B2%E7%89%B9%C2%B7%E6%BE%A4%E5%BE%B7 維基百科-盧特菲澤爾