簡易檢索 / 詳目顯示

研究生: 張桂豪
Chang, Kuei-Hao
論文名稱: 波形板上對流熱傳與熵增之研究
Study on Convection Heat Transfer and Entropy Generation along Wavy Plate
指導教授: 陳朝光
Chen, Chao-Kuang
楊玉姿
Yang, Yue-Tzu
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 158
中文關鍵詞: 波形板紊流座標轉換三次樣線
外文關鍵詞: wavy plate, turbulent flow, coordinate transformation, cubic spline
相關次數: 點閱:52下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以座標轉換系統分析在波形板上不同熱傳模式之熵增。流場形式包含層流與紊流。紊流強制對流控制方程從完整Navier-Stokes 方程式推導而得,Prandtl’s 轉換理論將原座標朝某方向拉開,波形面可被轉換至可計算的平面座標。轉換的控制方程式其不規則平面會被拉伸為可計算之規則平面,然後再利用三次樣線配置法求解。
    當紊流控制方程式簡化層流形式時,所得結果與之前研究比較十分吻合,說明本文所使用之座標轉換技巧及數值方法有利於分析複雜的幾何邊界,且所得的結果亦相當合理。同時,修正形式之無因次熵增也被導出,此式子包含了幾何(平面,波形面)、熱傳(對流與輻射)、流體摩擦力等效應。

    In this study, the Prandtl’s transformation method is used to analyze various entropy generation of heat transfer modes on wavy plate.The types of fluid flow include laminar and turbulent flow.The governing equations of turbulent forced convection along wavy surface are derived from complete Navier-Stokes equations. Prandtl’s transposition theorem is used to stretch the ordinary coordinate system in certain direction. The wavy surface can be transferred into a calculable plane surface coordinate system. The transformed governing equations can expand the irregular boundary into a calculable regular plane, and then solve it by using the cubic spline collocation method. When the governing equations of turbulent forced convection are simplified to a case of laminar flow on wavy plate, the results have good agreement with previous works. This indicates that the coordinate transformation and numerical methods used in this study are favorable to solve the complex geometry boundary and give reasonable results. Meanwhile, a modified form for the entropy generation equation is derived. The effect of geometry (e.g. flat surface, wavy surface), fluid friction and heat transfer (e.g. convection and radiation effects) are all included in the modified entropy generation form.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XIII 第1章 緒論 1 1.1 前言 1 1.2文獻回顧 2 1.3本文架構 11 第2章 理論基礎 12 2.1熵増基本理論 12 2.2 熱輻射基本理論 14 2.3 ROSSELAND 擴散近似假設 17 2.4 三次樣線理論 20 第3章 波形板上強迫對流熵增 31 3.1 系統控制方程式之建立 31 3.2 數值方法 35 3.3 結果與討論 36 3.4 結論 38 第4章 波形板上考慮輻射效應之微極流體強制對流熵增 48 4.1系統控制方程式之建立 48 4.2 數值方法 53 4.3 結果與討論 54 4.4 結論 57 第5章 波形板上考慮輻射效應之混合對流熵增 66 5.1系統控制方程式之建立 66 5.2 數值方法 70 5.3 結果與討論 71 5.4 結論 74 第6章 波形流道內考慮黏滯消散之熱傳性質分析 89 6.1系統控制方程式之建立 89 6.2 數值方法 95 6.3 結果與討論 96 6.4 結論 98 第7章 傾斜波形板上考慮幅射效應之混合對流熵增 105 7.1系統控制方程式之建立 105 7.2 數值方法 109 7.3 結果與討論 110 7.4 結論 112 第8章 波形板上紊流強制對流熵增 129 8.1系統控制方程式之建立 129 8.2 數值方法 135 8.3 結果與討論 135 8.4 結論 137 第9章 總結與未來展望 143 9.1 總結 143 9.2 未來展望 144 參考文獻 146 附錄A ROSSELAND 擴散近似假設 155 自述 158

    1.Yao, L.S., “Natural convection along a vertical wavy surface,” ASME J. Heat Transfer, Vol.105, pp.465-468,1983.
    2.Yao, L.S., “A note on Prandtl’s transposition theorem,”
    ASME J. Heat Transfer, Vol.100, pp.507-508, 1988.
    3.Moulic, G., “Mix convection along a wavy surface,” M. S.
    Thesis, Arizona State University, Tempe, AZ., 1983.
    4.Moulic, S.G. and Yao, L.S., “Natural convection along a
    vertical wavy surface with uniform heat flux,” ASME J.
    Heat Transfer, Vol.111, pp.1106–1108, 1989.
    5.Moulic, S.G. and Yao, L.S., “Mixed convection along a
    vertical wavy surface,” ASME J. Heat Transfer, Vol.111,
    pp.974–978, 1989b.
    6.Wang, C.C. and Chen, C.K., “Forced convection in
    micropolar fluid flow over a wavy surface,” Numer. Heat
    Transfer, Vol.37, pp.271–279, 2000.
    7.Jeffery, G. B., “The motion of ellipsoidal particies
    immersed in a viscous fluid,” Proceedings of the Royal
    Society of London, Series A, Vol.102, pp.161-179,1922.
    8.Prager, S., “Stress strain relations in a suspension of
    dumbbells,” Transactions Society of Rheology, Vol.1,
    pp.53-62, 1957.
    9.Ericksen, J. L., “Theory of anisotropic fluids,”
    Transactions Society of Rheology, Vol.4, pp.29-39,1960.
    10.Eringen, A. C., “Simple microfluids,” Int. J. Engng.
    Sci., Vol.2, pp.205-217, 1964.
    11.Eringen, A. C., “Theory of micropolar fluids,” Journal
    of Mathematical Mechanics, Vol.16, pp.1-16, 1966.
    12.Eringen, A. C., “Theory of thermomicro fluids,” Journal
    of Mathematical Analysis and Application, Vol.38, pp.480-
    490, 1972.
    13.Khonsari, M. M. and Brewe, D. E., “On the performance of
    finite journal bearings lubricated with micropolar
    fluids,” STLE Tribology Transactions, Vol.32, pp.155-
    160, 1989.
    14.Khonsari, M. M., “On the self-excited whirl orbits of a
    journal in a sleeve bearing lubricated with micropolar
    fluids,” Acta Mechanica, Vol.81, pp. 235-244,1990.
    15.Lee, J. D. and Eringen, A. C., “Boundary effects of
    orientation of nematic liquid crystals,” J. Chem. Phys.,
    Vol.55, pp.4509-4512, 1971.
    16.Lockwood, F. E., Benchaita, M. T. and Friberg, S.
    E., “Study of lyotropic liquid crystals in viscometric
    flow and elastohydrodynamic contact,” ASLE Tribology
    Transactions, Vol.30, pp. 539-548,1987.
    17.Ariman, T., Turk, M. A., and Sylvester, N. D. "On steady
    and pulsatile flow of blood." J. Appl. Mech., Vol.41,
    pp.1-7,1974.
    18.Hudimoto, B. and Tokuoka, T., “Two-dimensional shear
    flows of linear micropolar fluids,” International J. of
    Engineering Science, Vol.7, pp.515-522, 1969.
    19.Ariman, T., Turk, M. A. and Sylvester, N.
    D., “Microcontinuum fluid mechanics-a review,”
    International Journal of Engineering Science, Vol.11,
    pp.905-930,1973.
    20.Ariman, T., Turk, M. A. and Sylvester, N.
    D., “Applications of microcontinuum fluid mechanics,”
    International Journal of Engineering Science, Vol.12,
    pp.273-293, 1974.
    21.Wang, C.C. and Chen, C.K., “Transient force and free
    convection along a vertical wavy surface in micropolar
    fluids,” Int. J. Heat Mass Transfer, Vol.44, , pp.3241–
    3251,2001.
    22.Yang, Y.T., Chen, C.K. and Lin, M.T., “Natural
    convection of non-Newtonian fluids along a wavy vertical
    plate including the magnetic field effect,” Int. J. Heat
    Mass Transfer, Vol.39, pp.2831–2842,1996.
    23.Pop, I., Romania, C. S. and Ohio, N. C., “Laminar
    boundary layer flow of power-law fluids over wavy
    surfaces,” Acta Mechanics, Vol.115, pp.55-65,1996.
    24.Wang, C.C. and Chen, C.K., “Mixed convection boundary
    layer flow of non-Newtonian fluids along vertical wavys
    plates,” International Journal of Heat and Fluid Flow,
    Vol.23, pp.831–839, 2002.
    25.Wang, C.C. and Chen, C.K., “Mixed convection boundary
    layer flow on inclined wavy plates including the
    magnetic field effect,” International Journal of Thermal
    Sciences, Vol.44, pp.577–586, 2005.
    26.O’Brien J. E. and Sparrow E. M., “Corrugated-duct heat
    transfer, pressure drop, and flow visualization,” ASME
    Journal of Heat Transfer, Vol.104, pp.410-416, 1982.
    27.Saniei, N. and Dini, S., “Heat transfer characteristics
    in a wavy-walled Channel,” ASME Journal of Heat
    Transfer, Vol.115, pp.788-792, 1993.
    28.Wang, G. and Vanka, P., “Convective heat transfer in
    periodic wavy passages,” International Journal of Heat
    and Mass Transfer, Vol.38, pp.3219-3230,1995.
    29.Wang, C.C. and Chen, C.K., “Forced convection in a wavy-
    wall channel,” International Journal of Heat and Mass
    Transfer, Vol.45, pp. 2587–2595, 2002.
    30.Lien, F. S., Chen, C. K. and Cleaver, J.W., “Radiation
    effect on conjugated forced convection-conduction
    analysis of heat transfer in a plate fin.” AIAA journal,
    Vol. 23, pp.1645-1647, 1985.
    31.Rosseland, S., Theoretical Astrophysics, Oxford
    University Press: London, 1936
    32.Novotny, J.L. and Yang, K.T., “The interaction of
    thermal radiation in optically thick boundary layers.”
    ASME Journal of heat transfer, Vol.192, pp.309-312,
    1967.
    33.Cheng, E.H. and Ozisic, M.N., “Radiation with free
    convection in an absorbing, emitting and scattering
    medium,” Int. J. Heat Mass Transfer, Vol.15, pp.1243-
    1252, 1972.
    34.Elsayed, M. M., Fathalah, K. A., “Natural convection
    over a vertical fiat plate due to absorption of thermal
    radiation,” Heat and mass transfer, Vol.19, pp.121-
    129,1985.
    35.Hossain, M.A. and Takhar, H.S., “Radiation effect on
    mixed convection along a vertical plate with uniform
    surface temperature,” Heat and Mass Transfer, Vol.31,
    pp.243-248, 1996.
    36.Hossain, M.A., Rees, D.A.S. and Pop, I., “Free
    convection–radiation interaction from an isothermal
    plate inclined at a small angle to the horizontal,” Acta
    Mech, Vol.127, pp. 63–73, 1998.
    37.Hossain, M.A., Alim, M.A. and Rees, D.A.S., “The effect
    of radiation on free convection from a porous vertical
    plate,” Int. J. Heat Mass Transfer, Vol.42, pp.181–191,
    1999.
    38.Hossain, M.A. and Alim, M.A., “Natural convection–
    radiation interaction on boundary layer flow along a
    thin vertical cylinder,” Heat Mass Transfer, Vol.32,
    pp.515–520, 1997.
    39.Hossain, M.A., Alim, M.A. and Rees, D.A.S., “Effect of
    thermal radiation on natural convection over cylinders
    of elliptic cross section,” Acta Mech., Vol.129, pp.177–
    186, 1998.
    40.Hossain, M.A., Kutubuddin, M. and Pop, I., “Radiation–
    conduction interactionon mixed convection from a
    horizontal circular cylinder,” Heat Mass Transfer,
    Vol.35, pp.307–314, 1999.
    41.Kumari, M. and Nath, G., “Radiation effect on mixed
    convection from a horizontal surface in a porous
    medium,” Mechanics Research Communications, Vol.31,
    pp.483–491, 2004.
    42.Bejan, A., Entropy Generation Through Heat and Fluid
    Flow, pp.109-114, Wiley, New York, 1982.
    43.Bejan, A., Tsatsaronis, G. and Moran, M., Thermal Design
    and Optimization, Wiley, New York, USA, 1996.
    44.Bejan, A., “A study of entropy generation in fundamental
    convective heat transfer,” ASME J. Heat Transfer,
    Vol.101 , pp.718–725, 1979.
    45.Mahmud, S. and Fraser, R.A., “The second law analysis in
    fundamental convective heat transfer problems,”
    International Journal of Thermal Sciences, Vol.42, pp.
    177-186, 2003.
    46.Hung, Y.M., “Viscous dissipation effect on entropy
    generation for non-Newtonian fluid in microchannels,”
    International communications in heat and mass transfer,
    Vol.35, pp.1125-1129, 2008.
    47.Narusawa, U., “The second-law analysis of mixed
    convection in rectangular ducts,” Heat Mass Transfer,
    Vol.37, pp. 197–203, 2001.
    48.Sahin, A.Z., “A second law comparison for optimum shape
    of duct subjected to constant wall temperature and
    laminar flow,” Heat Mass Transfer, Vol.33, pp.425–430,
    1998.
    49.Nag, P.I.K. and Kumar, N., “Second law optimization of
    convective heat transfer through a duct with constant
    heat flux,” Internat. J. Energy Res.,Vol.13, pp.537–
    543,1989.
    50.Abbassi, H., Magherbi, M. and Ben Brahim, A., “Entropy
    generation in Poiseuille-Benard channel flow,” Int. J.
    Therm. Sci., Vol.42, pp.1081–1088, 2003.
    51.Araki, T., Kim, M. S., Iwai, H. and Suzuki, K., “An
    Experimental Investigation Of Gaseous Flow
    Characteristics In Microchannels.” Microscale
    Thermophysical Engineering, Vol.6, pp.117–130, 2002.
    52.Kim, S. J. and Jang, S. P., “Effects of the Darcy
    number, the Prandtl number, and theReynolds number on
    local thermal non-equilibrium.” International Journal of
    Heat and Mass Transfer, Vol.45, pp.3885–3896, 2002.
    53.Li, W.,Lin, J., Lee, S. and Chen, M., “Effects of
    roughness on rarefied gas flow in long microtubes,” J.
    Micromech. Microeng., Vol.12, pp.149–156, 2002.
    54.Qu, W., Mala, Gh. M. and Li, D., “Heat transfer for
    water flow in trapezoidal silicon microchannels,”
    International Journal of Heat and Mass Transfer, Vol.43,
    pp. 3925-3936, 2000.
    55.Koo, J. and Kleinstreuer, C., “Viscous Dissipation
    Effect in Microtubes and Microchannels,” Int. J. Heat
    and Mass Transfer, Vol.47, pp.3156-3169, 2001.
    56.Osamah Haddad, Mohammad Abuzaid1, Mohammad Al-
    Nimr, “Entropy Generation Due to Laminar Incompressible
    Forced Convection Flow Through Parallel-Plates
    Microchannel,” Entropy, Vol.6, pp.413-426, 2004.
    57.Mahmud, S and Fraser, R. A., “Inherent irreversibility
    of channel and pipe flows for non-Newtonian fluids,”
    Int. Commun. Heat Mass Transfer, Vol.29, pp. 577–587,
    2002.
    58.Hung, Y.M., “Viscous dissipation effect on entropy
    generation for non-Newtonian fluids in microchannels,”
    International Communications in Heat and Mass Transfer,
    Vol.35, pp.1125–1129, 2008.
    59.Jones, W. P. and Launder, B. E., “The Prediction of
    Laminarization with a Two-Equation Model of Turbulence,”
    International Journal of Heat and Mass Transfer, Vol.15,
    pp.301-314,1972.
    60.Launder, B. E., and Sharma, B. I., “Application of the
    Energy Dissipation Model of Turbulence to the
    Calculation of Flow Near a Spinning Disc," Letters in
    Heat and Mass Transfer,Vol.1, pp.131-138, 1974.
    61.Plumb, OA, and Kennedy, LA, “Application if a ke
    Turbulence Model to Natural Convection From a Vertical
    Isothermal Surface," ASME Journal of Heat, Vol.99, pp.79-
    85, 1977.
    62.Amano, R.S., “development of a turbulence near-wall
    model and its application to separate and reattached
    flow,” Numerical Heat transfer, Vol.7, pp.59-75,1984.
    63.Kuhn, S, Saša Kenjereš, Rudolf von Rohr, P., “Large eddy
    simulations of wall heat transfer and coherent
    structures in mixed convection over a wavy wall,” Int.
    journal of thermal sciences, Vol.49, pp.1209-1226,
    2010.
    64.Hooman, K., Hooman, F. and Mohebpour, S.R., “Entropy
    generation for forced convection in a porous channel
    with isoflux or isothermal walls,” Int. J. Exergy,
    Vol.5, pp.78-96, 2008.
    65.Paoletti, S., Rispoli, F. and Sciubba, E., “Calculation
    of exergetic losses in compact heat exchanger passages,”
    ASME AES, Vol.10, pp.21–29, 1989.
    66.Antar, M.A. and El-Shaarawi, M.A.I., “Entropy generation
    due to forced convection fluid flow about a solid
    sphere,” Int. J. Exergy,Vol.5, pp.97-114, 2008.
    67.Chen, C.K. and Su, Y.F., “Exergetic efficiency
    optimization for an irreversible Brayton refrigeration
    cycle,” International Journal of Thermal Sciences,
    Vol.44, pp.303-310, 2005.
    68.Cheng, C.Y. and Chen, C.K., “Efficiency optimizations of
    an irreversible Brayton heat engine,” Trans. ASME J. of
    Energy Resources Technol., Vol.120, pp.143-148, 1998.
    69.Su, Y.F. and Chen, C.K., “Analysis and optimisation of
    an irreversible Brayton refrigeration cycle using exergy
    concept,” International Journal of Exergy,Vol.5, pp.470-
    486, 2008.
    70.Ahlbrg, J. H., Nilson, E. N. and Walsh, J. L., “The
    theory of splines and their application,” Academic
    Press, 1967.
    71.Wang, P. and Kahawita, R., “A two-dimensional numerical
    model of estuarine circulation using cubic spline,”
    Canadian Journal of Civil Engineering, Vol.10, pp.116-
    124, 1983.
    72.Wang, P. and Kahawita, R., “Numerical integration of
    partial differential equations using cubic splines,”
    International Journal of Computer Mathematics, Vol.13,
    pp.271-286, 1983.
    73.Rubin, S. G. and Graves, R. A., “Viscous flow solution
    with a cubic spline approximation,” Computers and
    Fluids,Vol.1, pp.1-36, 1976.
    74.Napolitano, M., “Efficient ADI and spline ADI Methods
    for the steady-state Navior-Stokes equations,”
    International Journal for Numerical Methods in Fluids,
    Vol.4, pp.1101-1115, 1984.
    75.張靖周, “高等傳熱學,” pp.279-303, 科學出版社, 2009.
    76.賈明益, “應用三次樣線定置法解邊界層熱傳遞問題,” 國立成功大學機
    械工程學系, 1988.
    77.王啟昌,“波形表面效應在水平板膜狀凝結及非牛頓流體通過平板或渠道上
    之熱傳研究,” 國立成功大學機械工程學系, 2001.

    下載圖示 校內:2014-02-10公開
    校外:2016-02-10公開
    QR CODE