| 研究生: |
張桂豪 Chang, Kuei-Hao |
|---|---|
| 論文名稱: |
波形板上對流熱傳與熵增之研究 Study on Convection Heat Transfer and Entropy Generation along Wavy Plate |
| 指導教授: |
陳朝光
Chen, Chao-Kuang 楊玉姿 Yang, Yue-Tzu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 158 |
| 中文關鍵詞: | 波形板 、紊流 、座標轉換 、三次樣線 |
| 外文關鍵詞: | wavy plate, turbulent flow, coordinate transformation, cubic spline |
| 相關次數: | 點閱:52 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以座標轉換系統分析在波形板上不同熱傳模式之熵增。流場形式包含層流與紊流。紊流強制對流控制方程從完整Navier-Stokes 方程式推導而得,Prandtl’s 轉換理論將原座標朝某方向拉開,波形面可被轉換至可計算的平面座標。轉換的控制方程式其不規則平面會被拉伸為可計算之規則平面,然後再利用三次樣線配置法求解。
當紊流控制方程式簡化層流形式時,所得結果與之前研究比較十分吻合,說明本文所使用之座標轉換技巧及數值方法有利於分析複雜的幾何邊界,且所得的結果亦相當合理。同時,修正形式之無因次熵增也被導出,此式子包含了幾何(平面,波形面)、熱傳(對流與輻射)、流體摩擦力等效應。
In this study, the Prandtl’s transformation method is used to analyze various entropy generation of heat transfer modes on wavy plate.The types of fluid flow include laminar and turbulent flow.The governing equations of turbulent forced convection along wavy surface are derived from complete Navier-Stokes equations. Prandtl’s transposition theorem is used to stretch the ordinary coordinate system in certain direction. The wavy surface can be transferred into a calculable plane surface coordinate system. The transformed governing equations can expand the irregular boundary into a calculable regular plane, and then solve it by using the cubic spline collocation method. When the governing equations of turbulent forced convection are simplified to a case of laminar flow on wavy plate, the results have good agreement with previous works. This indicates that the coordinate transformation and numerical methods used in this study are favorable to solve the complex geometry boundary and give reasonable results. Meanwhile, a modified form for the entropy generation equation is derived. The effect of geometry (e.g. flat surface, wavy surface), fluid friction and heat transfer (e.g. convection and radiation effects) are all included in the modified entropy generation form.
1.Yao, L.S., “Natural convection along a vertical wavy surface,” ASME J. Heat Transfer, Vol.105, pp.465-468,1983.
2.Yao, L.S., “A note on Prandtl’s transposition theorem,”
ASME J. Heat Transfer, Vol.100, pp.507-508, 1988.
3.Moulic, G., “Mix convection along a wavy surface,” M. S.
Thesis, Arizona State University, Tempe, AZ., 1983.
4.Moulic, S.G. and Yao, L.S., “Natural convection along a
vertical wavy surface with uniform heat flux,” ASME J.
Heat Transfer, Vol.111, pp.1106–1108, 1989.
5.Moulic, S.G. and Yao, L.S., “Mixed convection along a
vertical wavy surface,” ASME J. Heat Transfer, Vol.111,
pp.974–978, 1989b.
6.Wang, C.C. and Chen, C.K., “Forced convection in
micropolar fluid flow over a wavy surface,” Numer. Heat
Transfer, Vol.37, pp.271–279, 2000.
7.Jeffery, G. B., “The motion of ellipsoidal particies
immersed in a viscous fluid,” Proceedings of the Royal
Society of London, Series A, Vol.102, pp.161-179,1922.
8.Prager, S., “Stress strain relations in a suspension of
dumbbells,” Transactions Society of Rheology, Vol.1,
pp.53-62, 1957.
9.Ericksen, J. L., “Theory of anisotropic fluids,”
Transactions Society of Rheology, Vol.4, pp.29-39,1960.
10.Eringen, A. C., “Simple microfluids,” Int. J. Engng.
Sci., Vol.2, pp.205-217, 1964.
11.Eringen, A. C., “Theory of micropolar fluids,” Journal
of Mathematical Mechanics, Vol.16, pp.1-16, 1966.
12.Eringen, A. C., “Theory of thermomicro fluids,” Journal
of Mathematical Analysis and Application, Vol.38, pp.480-
490, 1972.
13.Khonsari, M. M. and Brewe, D. E., “On the performance of
finite journal bearings lubricated with micropolar
fluids,” STLE Tribology Transactions, Vol.32, pp.155-
160, 1989.
14.Khonsari, M. M., “On the self-excited whirl orbits of a
journal in a sleeve bearing lubricated with micropolar
fluids,” Acta Mechanica, Vol.81, pp. 235-244,1990.
15.Lee, J. D. and Eringen, A. C., “Boundary effects of
orientation of nematic liquid crystals,” J. Chem. Phys.,
Vol.55, pp.4509-4512, 1971.
16.Lockwood, F. E., Benchaita, M. T. and Friberg, S.
E., “Study of lyotropic liquid crystals in viscometric
flow and elastohydrodynamic contact,” ASLE Tribology
Transactions, Vol.30, pp. 539-548,1987.
17.Ariman, T., Turk, M. A., and Sylvester, N. D. "On steady
and pulsatile flow of blood." J. Appl. Mech., Vol.41,
pp.1-7,1974.
18.Hudimoto, B. and Tokuoka, T., “Two-dimensional shear
flows of linear micropolar fluids,” International J. of
Engineering Science, Vol.7, pp.515-522, 1969.
19.Ariman, T., Turk, M. A. and Sylvester, N.
D., “Microcontinuum fluid mechanics-a review,”
International Journal of Engineering Science, Vol.11,
pp.905-930,1973.
20.Ariman, T., Turk, M. A. and Sylvester, N.
D., “Applications of microcontinuum fluid mechanics,”
International Journal of Engineering Science, Vol.12,
pp.273-293, 1974.
21.Wang, C.C. and Chen, C.K., “Transient force and free
convection along a vertical wavy surface in micropolar
fluids,” Int. J. Heat Mass Transfer, Vol.44, , pp.3241–
3251,2001.
22.Yang, Y.T., Chen, C.K. and Lin, M.T., “Natural
convection of non-Newtonian fluids along a wavy vertical
plate including the magnetic field effect,” Int. J. Heat
Mass Transfer, Vol.39, pp.2831–2842,1996.
23.Pop, I., Romania, C. S. and Ohio, N. C., “Laminar
boundary layer flow of power-law fluids over wavy
surfaces,” Acta Mechanics, Vol.115, pp.55-65,1996.
24.Wang, C.C. and Chen, C.K., “Mixed convection boundary
layer flow of non-Newtonian fluids along vertical wavys
plates,” International Journal of Heat and Fluid Flow,
Vol.23, pp.831–839, 2002.
25.Wang, C.C. and Chen, C.K., “Mixed convection boundary
layer flow on inclined wavy plates including the
magnetic field effect,” International Journal of Thermal
Sciences, Vol.44, pp.577–586, 2005.
26.O’Brien J. E. and Sparrow E. M., “Corrugated-duct heat
transfer, pressure drop, and flow visualization,” ASME
Journal of Heat Transfer, Vol.104, pp.410-416, 1982.
27.Saniei, N. and Dini, S., “Heat transfer characteristics
in a wavy-walled Channel,” ASME Journal of Heat
Transfer, Vol.115, pp.788-792, 1993.
28.Wang, G. and Vanka, P., “Convective heat transfer in
periodic wavy passages,” International Journal of Heat
and Mass Transfer, Vol.38, pp.3219-3230,1995.
29.Wang, C.C. and Chen, C.K., “Forced convection in a wavy-
wall channel,” International Journal of Heat and Mass
Transfer, Vol.45, pp. 2587–2595, 2002.
30.Lien, F. S., Chen, C. K. and Cleaver, J.W., “Radiation
effect on conjugated forced convection-conduction
analysis of heat transfer in a plate fin.” AIAA journal,
Vol. 23, pp.1645-1647, 1985.
31.Rosseland, S., Theoretical Astrophysics, Oxford
University Press: London, 1936
32.Novotny, J.L. and Yang, K.T., “The interaction of
thermal radiation in optically thick boundary layers.”
ASME Journal of heat transfer, Vol.192, pp.309-312,
1967.
33.Cheng, E.H. and Ozisic, M.N., “Radiation with free
convection in an absorbing, emitting and scattering
medium,” Int. J. Heat Mass Transfer, Vol.15, pp.1243-
1252, 1972.
34.Elsayed, M. M., Fathalah, K. A., “Natural convection
over a vertical fiat plate due to absorption of thermal
radiation,” Heat and mass transfer, Vol.19, pp.121-
129,1985.
35.Hossain, M.A. and Takhar, H.S., “Radiation effect on
mixed convection along a vertical plate with uniform
surface temperature,” Heat and Mass Transfer, Vol.31,
pp.243-248, 1996.
36.Hossain, M.A., Rees, D.A.S. and Pop, I., “Free
convection–radiation interaction from an isothermal
plate inclined at a small angle to the horizontal,” Acta
Mech, Vol.127, pp. 63–73, 1998.
37.Hossain, M.A., Alim, M.A. and Rees, D.A.S., “The effect
of radiation on free convection from a porous vertical
plate,” Int. J. Heat Mass Transfer, Vol.42, pp.181–191,
1999.
38.Hossain, M.A. and Alim, M.A., “Natural convection–
radiation interaction on boundary layer flow along a
thin vertical cylinder,” Heat Mass Transfer, Vol.32,
pp.515–520, 1997.
39.Hossain, M.A., Alim, M.A. and Rees, D.A.S., “Effect of
thermal radiation on natural convection over cylinders
of elliptic cross section,” Acta Mech., Vol.129, pp.177–
186, 1998.
40.Hossain, M.A., Kutubuddin, M. and Pop, I., “Radiation–
conduction interactionon mixed convection from a
horizontal circular cylinder,” Heat Mass Transfer,
Vol.35, pp.307–314, 1999.
41.Kumari, M. and Nath, G., “Radiation effect on mixed
convection from a horizontal surface in a porous
medium,” Mechanics Research Communications, Vol.31,
pp.483–491, 2004.
42.Bejan, A., Entropy Generation Through Heat and Fluid
Flow, pp.109-114, Wiley, New York, 1982.
43.Bejan, A., Tsatsaronis, G. and Moran, M., Thermal Design
and Optimization, Wiley, New York, USA, 1996.
44.Bejan, A., “A study of entropy generation in fundamental
convective heat transfer,” ASME J. Heat Transfer,
Vol.101 , pp.718–725, 1979.
45.Mahmud, S. and Fraser, R.A., “The second law analysis in
fundamental convective heat transfer problems,”
International Journal of Thermal Sciences, Vol.42, pp.
177-186, 2003.
46.Hung, Y.M., “Viscous dissipation effect on entropy
generation for non-Newtonian fluid in microchannels,”
International communications in heat and mass transfer,
Vol.35, pp.1125-1129, 2008.
47.Narusawa, U., “The second-law analysis of mixed
convection in rectangular ducts,” Heat Mass Transfer,
Vol.37, pp. 197–203, 2001.
48.Sahin, A.Z., “A second law comparison for optimum shape
of duct subjected to constant wall temperature and
laminar flow,” Heat Mass Transfer, Vol.33, pp.425–430,
1998.
49.Nag, P.I.K. and Kumar, N., “Second law optimization of
convective heat transfer through a duct with constant
heat flux,” Internat. J. Energy Res.,Vol.13, pp.537–
543,1989.
50.Abbassi, H., Magherbi, M. and Ben Brahim, A., “Entropy
generation in Poiseuille-Benard channel flow,” Int. J.
Therm. Sci., Vol.42, pp.1081–1088, 2003.
51.Araki, T., Kim, M. S., Iwai, H. and Suzuki, K., “An
Experimental Investigation Of Gaseous Flow
Characteristics In Microchannels.” Microscale
Thermophysical Engineering, Vol.6, pp.117–130, 2002.
52.Kim, S. J. and Jang, S. P., “Effects of the Darcy
number, the Prandtl number, and theReynolds number on
local thermal non-equilibrium.” International Journal of
Heat and Mass Transfer, Vol.45, pp.3885–3896, 2002.
53.Li, W.,Lin, J., Lee, S. and Chen, M., “Effects of
roughness on rarefied gas flow in long microtubes,” J.
Micromech. Microeng., Vol.12, pp.149–156, 2002.
54.Qu, W., Mala, Gh. M. and Li, D., “Heat transfer for
water flow in trapezoidal silicon microchannels,”
International Journal of Heat and Mass Transfer, Vol.43,
pp. 3925-3936, 2000.
55.Koo, J. and Kleinstreuer, C., “Viscous Dissipation
Effect in Microtubes and Microchannels,” Int. J. Heat
and Mass Transfer, Vol.47, pp.3156-3169, 2001.
56.Osamah Haddad, Mohammad Abuzaid1, Mohammad Al-
Nimr, “Entropy Generation Due to Laminar Incompressible
Forced Convection Flow Through Parallel-Plates
Microchannel,” Entropy, Vol.6, pp.413-426, 2004.
57.Mahmud, S and Fraser, R. A., “Inherent irreversibility
of channel and pipe flows for non-Newtonian fluids,”
Int. Commun. Heat Mass Transfer, Vol.29, pp. 577–587,
2002.
58.Hung, Y.M., “Viscous dissipation effect on entropy
generation for non-Newtonian fluids in microchannels,”
International Communications in Heat and Mass Transfer,
Vol.35, pp.1125–1129, 2008.
59.Jones, W. P. and Launder, B. E., “The Prediction of
Laminarization with a Two-Equation Model of Turbulence,”
International Journal of Heat and Mass Transfer, Vol.15,
pp.301-314,1972.
60.Launder, B. E., and Sharma, B. I., “Application of the
Energy Dissipation Model of Turbulence to the
Calculation of Flow Near a Spinning Disc," Letters in
Heat and Mass Transfer,Vol.1, pp.131-138, 1974.
61.Plumb, OA, and Kennedy, LA, “Application if a ke
Turbulence Model to Natural Convection From a Vertical
Isothermal Surface," ASME Journal of Heat, Vol.99, pp.79-
85, 1977.
62.Amano, R.S., “development of a turbulence near-wall
model and its application to separate and reattached
flow,” Numerical Heat transfer, Vol.7, pp.59-75,1984.
63.Kuhn, S, Saša Kenjereš, Rudolf von Rohr, P., “Large eddy
simulations of wall heat transfer and coherent
structures in mixed convection over a wavy wall,” Int.
journal of thermal sciences, Vol.49, pp.1209-1226,
2010.
64.Hooman, K., Hooman, F. and Mohebpour, S.R., “Entropy
generation for forced convection in a porous channel
with isoflux or isothermal walls,” Int. J. Exergy,
Vol.5, pp.78-96, 2008.
65.Paoletti, S., Rispoli, F. and Sciubba, E., “Calculation
of exergetic losses in compact heat exchanger passages,”
ASME AES, Vol.10, pp.21–29, 1989.
66.Antar, M.A. and El-Shaarawi, M.A.I., “Entropy generation
due to forced convection fluid flow about a solid
sphere,” Int. J. Exergy,Vol.5, pp.97-114, 2008.
67.Chen, C.K. and Su, Y.F., “Exergetic efficiency
optimization for an irreversible Brayton refrigeration
cycle,” International Journal of Thermal Sciences,
Vol.44, pp.303-310, 2005.
68.Cheng, C.Y. and Chen, C.K., “Efficiency optimizations of
an irreversible Brayton heat engine,” Trans. ASME J. of
Energy Resources Technol., Vol.120, pp.143-148, 1998.
69.Su, Y.F. and Chen, C.K., “Analysis and optimisation of
an irreversible Brayton refrigeration cycle using exergy
concept,” International Journal of Exergy,Vol.5, pp.470-
486, 2008.
70.Ahlbrg, J. H., Nilson, E. N. and Walsh, J. L., “The
theory of splines and their application,” Academic
Press, 1967.
71.Wang, P. and Kahawita, R., “A two-dimensional numerical
model of estuarine circulation using cubic spline,”
Canadian Journal of Civil Engineering, Vol.10, pp.116-
124, 1983.
72.Wang, P. and Kahawita, R., “Numerical integration of
partial differential equations using cubic splines,”
International Journal of Computer Mathematics, Vol.13,
pp.271-286, 1983.
73.Rubin, S. G. and Graves, R. A., “Viscous flow solution
with a cubic spline approximation,” Computers and
Fluids,Vol.1, pp.1-36, 1976.
74.Napolitano, M., “Efficient ADI and spline ADI Methods
for the steady-state Navior-Stokes equations,”
International Journal for Numerical Methods in Fluids,
Vol.4, pp.1101-1115, 1984.
75.張靖周, “高等傳熱學,” pp.279-303, 科學出版社, 2009.
76.賈明益, “應用三次樣線定置法解邊界層熱傳遞問題,” 國立成功大學機
械工程學系, 1988.
77.王啟昌,“波形表面效應在水平板膜狀凝結及非牛頓流體通過平板或渠道上
之熱傳研究,” 國立成功大學機械工程學系, 2001.