簡易檢索 / 詳目顯示

研究生: 曾鴻翰
Tseng, Hong-Han
論文名稱: 半導體薄膜製程之殘餘應力研究
Investigation of Residual Stresses in Semiconductor Process
指導教授: 黃吉川
Hwang, Chi-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 77
中文關鍵詞: 薄膜分子動力學應力
外文關鍵詞: molecular dynamics, thin film, stress
相關次數: 點閱:141下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在半導體工業日新月異的進步下,固態薄膜已成為不可或缺的基本元件之一,尤其在不斷要求元件微型化的今日。在這趨勢下,利用傳統的巨觀塊體的觀念來探討薄膜的應力問題顯然已不足以提供準確的結果,而必須引用微觀原子等級的觀念來研究此類問題。本文乃應用分子動力學輔以原子級應力觀念來探討鈷/銅雙層薄膜以及在離子植佈中的三維應力問題,並藉由調整應力計算區域之高度來求得沿薄膜厚度方向的應力分布情形
      由鈷/銅沉積薄膜之分析結果可知,在薄膜界面中原子錯排以及晶格不匹配會造成應力值的上升,而應力值的來源為原子之間的作用力和熱運動造成的,其中前者為主要造成應力上升的主因。離子植佈中,硼離子的濃度分佈受到基板旋轉角度的影響,當基板旋轉角度較大時離子越不容易入射到基板深層,矽基板表面的原子被高動能的離子轟擊後,造成許多空洞所以此區域的應力值大幅上升,而在經過快速退火後應力有大幅度衰減的現象,硼離子的分佈有向基板內部趨入集中的現象。由上述兩者的應力探討藉以希望能提供在製作薄膜中觀察應力分佈參考。

      The progress of semiconductor industry changes with each passing day. The solid thin film becomes the fundamental device, especially the device is required to be tiny today. In this situation, it appears that discussing tresses in thin film can not provide accurate results by the traditional opinion of macro-block. It must introduce the atomic view to research this problem. In this thesis using the molecular dynamic theory and atomic stress opinion to discuss the three dimensional stress in Co/Cu thin film and ion implantation. By adjusting the calculating zone to calculate the distributional stress along with the thickness of thin film.
      By the analysis of Co/Cu thin film, the raise of stress in thin film is caused by atomic dislocation and latticed mismatch and the main source are the atomic interaction and thermal motion which the former is the main factor to influence the stress. In the ion implantation the distribution of B is influenced by the angle rotation of substrate. When the substrate’s angle is larger the incident ion is harder to inject into the depth of substrate. There are a lots vacancy in the surface of substrate that will cause the raise of stress in this zone by bombing high energy ion. After rapid thermal process the stress will be decreasing and the B ion will concentrate on the inner of substrate. Above both discussion, hope it can provide the reference of stress’ contribution to fabricate the thin film.

    目錄……………………………………………………………………Ⅰ 中文摘要………………………………………………………………Ⅲ 英文摘要………………………………………………………………Ⅳ 圖目錄…………………………………………………………………Ⅵ 表目錄…………………………………………………………………Ⅷ 誌謝……………………………………………………………………Ⅸ 符號說明………………………………………………………………Ⅹ 第一章 緒論 1-1 半導體沉積製程簡介....................................1 1-1-1 薄膜沉積製程簡介....................................1 1-1-2 離子佈植簡介.......................................14 1-2 文獻回顧.............................................18 1-2-1 薄膜應力相關問題文獻回顧...........................18 1-2-2 離子植佈製程之文獻回顧.............................21 1-3 研究動機與目的.......................................25 1-4 論文架構.............................................26 第二章薄膜製程之巨磁阻多層膜殘餘應力研究 2 -1 微觀應力之基礎理論..................................27 2-1-1 微觀薄膜應力.......................................27 2-1-2 微觀應力公式推導...................................28 2-1-3 應力測試模型之建立.................................33 2-1-4 時間平均及空間選取對應力計算之影響.................35 2-2 巨磁阻多層膜物理模型建構.............................37 2-3 模擬流程.............................................40 2-4 探討沉積薄膜內之區域應力分布.........................41 第三章 薄膜製程之離子植佈殘餘應力研究 3-1 離子佈植物理模型建構.................................44 3-2 模擬流程.............................................48 3-3 離子植入之離子濃度分佈及有效應力探討.................49 第五章 結論與建議 5-1 討論.................................................52 5-2 建議與未來展望.......................................53 圖表說明.................................................54 參考文獻.................................................71

    [1]莊達人,VLSI製造技術,高立出版社
    [2]Takayuki Kitamura, Hiroyuki Hirakata, ”Effect of residual stress on
    felamonation from interface edge between nano-films”, Engineering Fracture
    Mechanics,Vol.70, p2089, 2003
    [3]M.F. Doerner, W.D. Nix,”Stresses and Deformation Processes in Thin Films on
    Substrates”, CRC Critical Review in Solid State and Materials Science, Vol 14
    ,p225,1988
    [4]P. Chaundri,“Grain Growth and Stress Relief in Thin Films,”J. Vacuum
    Science and Technology, Vol.9,p520,1973.
    [5]J. A. Thornton, J. Tabock, D. W. Hoffman, Thin Solid Films, Vol. 64, No.
    111,1979.
    [6]Bruce M. Clemens, William D. Nix ,”Stress Evolution During Growth of
    Sputtered Ni/Cu Multilayers”
    [7]Vilya Ramaswamy, W.D. Nix, ”Stress evolution in sputtered FCC metal
    multilayers ”
    [8]D.J. Quesnel, D.S. Rimai, ”Elastic compliances and stiffensses of the FCC
    Lennar-Jones solid”, Physical Review B, Vol.48(10),1993
    [9]Toshihiro IWAKI, ”Molecular Dynamics Study on Stress-Strain in Very Thin
    Film”, Series A, Vol.39(3),p346,1996
    [10]J. Cormier, J.M. Rickaman, ”Stress Calculation in Atomistic Simulations of
    Perfect and Imperfect Solids”, Journal of Applied Physics,
    Vol.89(1),p99,2001
    [11]J.F Lutsko, ”Stress and Elastic constants in anisotropic Solids: Molecular
    Dynamics Techniques”, Journal of Applied Physics, Vol.64(3),p1152,1988
    [12]Zhen-Gang Wang, Uzi Landman, ”Molecular-dynamics study of elasticity and
    failure of ideal solids”, Physical Review B,Vol.44(1),p378,1991
    [13]Noriyuki Miyazaki,Yasunori Shiozaki, ”Calculation of Mechanical properties
    of solid using molecular dynamics method”, Series A ,Vol.39(4),p606,1996
    [14]Liang Dong, Jurgen Schnitker, ”Stress relation and misfit dislocation
    nucleation in the growth of misfitting films:A molecular dynamics simulation
    study”, Journal Appliec Physics, Vol.83(1),p217,1998
    [15]C.C. Fang, F. Jones, ”Stress and microstructure of sputter-deposited thin
    film: Molecular dynamics simulations and experiment”, Journal of Vacuum
    Science and Technology B,vol.11(6),p2947,1993
    [16]Sulin Zhang, Harley T. Johnson, ”Stress generation mechanisms in carbon thin
    film grown by ion-beam deposition”,Act Materialia Vol.51,p5211,2003
    [17]Irian rosenblum, Joan Adler, ”Molecular-dynamics simulation of thermal
    stress at the(100) diamond/substrate interface: Effect of film continuity”,
    Physical Review B, Vol.62(4),p4117,2000
    [18]N.A Marks, D.R. McKenzie, ”Molecular-dynamics study of compressive stress
    generation”, Physical Review B, Vol.53(7), 1996
    [19]M.W. Ribarsky, Uzi Landman, “Dynamical simulations of stress, strain, and
    finite deformations ”, Physical Review B, Vol.13(14),p9522, 1988
    [20]K.W. Koh, H.J. Oh,” A novel atomic doping technology for ultra-shallow
    junction of SOI-MOSFETs”,MAT SCI ENG B-SOLID Vol.89 (1-3),p435,2002
    [21]San Jose,”The National Technology Roadmap for Semiconductors”,
    Semiconductor Industry Association, CA, 1997
    [22]R.A. Yankov et. al.,”Defects remaining in Mev-ion-implantation and annealed
    Si away from the peak of the nuclear energy deposition
    profile”, Nucl. Instr.and Meth.B vol.127-128,69,1999
    [23]H.U. Jagar,” Point defect-based modeling of diffusion and electrical
    activation of ion implanted boron in crystalline silicon”, J. Appl. Phys.
    Vol.78(1),p176,1995
    [24]R.B. Fair, ’ULSI Technology’, McGraw-Hill, New York, 1996
    [25]E.S. Jung, and J.C. Bea, ”Ultra-shallow junction with elevated SiGe
    source/drain fabricated by laser-induced atomic layer doping”ELECTRON LETT
    Vol.38 (16),p926,2002
    [26]G. Fortunato, L. Mariucci, and M. Stanizzi, et al. ”Ultra-shallow junction
    formation by excimer laser annealing and low energy (< 1 keV) B implantation:
    A two-dimensional analysis”, Nucl. Instr. and Meth.B Vol.186,p401,2002
    [27]B.Y. Choi, I.H. Nam, J.D. Lee, et al.”Sub-0.1-mu m NMOSFET with 12-nm
    n(+)-p junction using 5-keV As-2(+) ion implantation”J. KOREAN Phys. Soc.
    Vol39 (1), p72-75,2001
    [28]H.S. Chao, and S.W. Crowder, et al., ”Species and dose dependence of ion
    implantation damage induced transient enhanced diffusion”, J. Appl. Phys.
    Vol.79(5),p2352,1996
    [29]P.A. Stolk, et al., “Physical mechanisms of transient enhanced dopant
    diffusion in ion-implanted silicon”, J. Appl. Phys.,Vol.81,p6031,1997
    [30]M. Giles, ”Transient phosphorus diffusion below the amorphization
    threshold”, J. Electrochem. Soc., Vol.138,p1160,1991
    [31]K. Nordlund, ”Mplecular dynamics simulation of ion ranges in the 1-100Kev
    energy range”, Comp. Mater. Sci., Vol.3,p448,1995
    [32]K. Nordulund, ”Molecular dynamics simulation of ion range at Kev energies”,
    Nucl. Instr.and Meth.B vol.115,p528,1996
    [33]J. Peltola, and K. Nordlund, ”Effects of damage build-up in range
    profiles in crystalline Si; Molecular dynamics simulation” ,Nucl.
    Instr.and Meth. Bvol.195,p269,2002
    [34]J. Peltola, k. Nordlund and J. Keinonen, ”Molecular dynamics simulation
    method for calculating fluence-dependent rang profiles”, Nucl. Instr. and
    Meth. B vol.202,p132,2003
    [35]A.F. Tasch, and S.K. Banerjee, “Ultra-shallow junction formation in silicon
    using ion implantation”, NUCL INSTRUM METH B Vol.112 (1-4),p177,1996
    [36]H. Guckel, D.W. Burns et al., ”Fined-grained polysilicon films with built-in
    tensile strain”, IEEE Trans. Electron Devices, Vol.35(6),p800,1988
    [37]P.J. French, B.P. Drieenhuizen et al.,”The development of a low-stress
    polysilicon process compatible with standard device processing”, IEEE J.
    Microelectromech. Syst.,Vol.5,p187,1996
    [38]K.W. Koh, and H.J. Choi, ”A novel atomic doping technology for ultra-shallow
    junction of SOI-MOSFETs”, Mat. Sci. Eng B-SOLID,Vol.89 (1-3),p435,2002
    [39]Song YH, and Bae JC,”Ultra-shallow junction technology by atomic layer
    doping from arsenic adsorbed layer”, ELECTRONICS LETTERS Vol.35
    (5),p431,1999
    [40]Foad, and A. Majeed, ”Formation of Ultra-shallow junctions by ion
    implantation and RTA”, Solid State Tech. Vol.41(12), 0038111X,1998
    [41]S.P. McCoy et al., ”Transient-Enhanced Diffusion in Shallow Junction
    Formation”, www.njit.edu/~fiory/Slides/ TMS2002TransientDiffusion.pdf
    [42]S. Kunihiro, ”Model for Transient Enhanced Diffusion of Ion- Implanter Born
    ,Asenic,and Process Conditions”, Fujitsu Sci. Tech. J., Vol.39(1),p138(2003)
    [43]E. Lampin and F Cristiano et al.,”Prediction of boron transient enhanced
    diffusion through the atom-by-atom modeling of extended
    defects”,J.Appl.Phys.Vol.94(12),p7520,(2003)
    [44]P.A. Stolk, H.J. Gossmann et al., ”Physical mechanisms of transient enhanced
    dopant diffusion in ion-implanted silicon”, J. Appl. Phys
    Vol.81(9),p6031,1997
    [45]Fenouillet-Beranger C, Skotnicki T, “Requirements for ultra-thin-film
    devices and new materials for the CMOS roadmap”,SOLID STATE ELECTRON Vol.48
    (6),p961,2004
    [46]L.Ristic, M. L. Kniffin, R. Gutterdge, and H.G. Hughes, “Properties of
    polysilicon films annealed by rapid thermal annealing process”, Thin Solid
    Films, Vol.220,p106,992
    [47]Wang JQ, Yang SR, “Preparation and characterization of arachidic acid
    self-assembled monolayers on glass substrate coated with sol-gel Al2O3 thin
    film”,SURF COAT TECH Vol.176(2),p229,2004
    [48]Lu WJ, Shi DT, “A surface/interfacial structural model of Pd ultra-thin film
    on SiC at elevated temperatures”, MATER SCI FORUM Vol.338(3),2000
    [49]O.Nittono, T.Kaneko, ”Film Stress and Its Influence on Metallurgical
    Phenomena in Thin Film ”, J. Jpn. Soc. Met. Eng. Vol.29(4),1990
    [50]D.W. Heerman, ”Computer Simulation Method”,(Springer, Berlin,1986)
    [51]C.R.A. Catlow, W.C. Machord, ”Computer Simulation of Solids”,
    (Springer,Berlin, 1982)
    [52]J.M.Haile, ”Molecular Dynamics Simulation”,(Wiley,1997)
    [53]D.C. Rapaport, ”The Art of Molecular Dynamics Simulation ”,(Cambridge,1995)
    [54]Brostow W., Kubat J., ”Molecular Dynamics Simulation of Stress Relation on a
    Triangular Lattice”,Physical Review B,Vol.47(13),p7659,1993
    [55]Seliger R.L.B., Lynden-Bell, ”Stress-Induced Failure and Melting of Ideal
    Solids”, Journal of Chemical Physics, Vol.98(12),9808,1993
    [56]H.J.C. Berendsen, J.P.M. Postma, ”Molecular Dynamics with coupling to an
    external bath”, journal of Chemical Physcal Vol.81(8),3684,1984
    [57]V. Rosato et al., Philosophical Magazine A,Vol.59(2)p.321,1989
    [58]N. Vevanov, and V.S. Stepanyuk,Surf. Sci. Vol.400 p.54,1998
    [59]J. Tersoff, ”Empirical interatomic potential for silicon with improved
    properties”, Phys. Rev. Lett,Vol.38(14),p9902,1988
    [60]J. Tersoff, ”Empirical model for the structural properties of silicon”,
    Phys. Rev. Lett,Vol.56,p632,1986

    下載圖示 校內:2005-08-23公開
    校外:2005-08-23公開
    QR CODE