簡易檢索 / 詳目顯示

研究生: 李科靚
Lee, Ke-Jing
論文名稱: 多元金屬複合材料於電阻式記憶體之應用
Application of Multi-metal Composite Materials in Resistive Random Access Memory
指導教授: 王永和
Wang, Yeong-Her
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 222
中文關鍵詞: 溶膠凝膠鈣鈦礦記憶體電晶體二極體雙極性螯合效應鈦鎳酸鍶一個電晶體一個電阻式(1T1R)有機薄膜電晶體一個二極體一個電阻式(1D1R)電阻式記憶體鹼土金屬氧空缺選擇器
外文關鍵詞: sol-gel, transistor, perovskite, memory, bipolar, chelation effect, strontium titanate nickelate (STN), flexible, one transistor and one resistor (1T1R), organic thin-film transistor (OTFT), One diodeeone resistor (1D1R), resistive random access memory (RRAM), alkaline earth metal, oxygen vacancy, selector
相關次數: 點閱:106下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇論文主要利用溶液式手法製備鈣鈦礦材料,並應用於非揮發性記憶體、二極體、選擇器以及有機薄膜電晶體中。因此,論文主要分為四部分,第一部分為鈣鈦礦材料應用於記憶體之研究;第二部分為二極體應用於記憶體之研究;第三部分為有機薄膜電晶體應用於記憶體之研究;第四部分為選擇器應用於記憶體之研究。
    首先,利用溶膠凝膠手法製備出鈦酸鋇、鈦酸鍶、鈦酸鎂等薄膜。本研究提出鹼土氧化物基存儲器件的原子半徑差異較小有利於降低高電阻電流。鈦酸鋇、鈦酸鍶及鈦酸鎂應用於電阻式記憶體的阻值比分別可達到102、103和105。高電阻電流對原子半徑差異的依賴性,由Hume–Rothery規則預測並通過實驗證實。水解的顆粒,表面粗糙度和氧空位密度隨著原子半徑的不同而減少鈦元素和鹼土金屬較少。與鈦酸鋇薄膜相比,鈦酸鎂薄膜顆粒較少,更光滑的表面和更少的氧空位密度,導致更低的高電阻電流。因此,適合的元素對鹼土氧化物應用記憶體元件的選擇可以降低高電阻電流。
    為了進一步改善元件特性,新溶膠-凝膠手法提出不需藉由摻雜和高溫烘烤等步驟,製備出四元化合物薄膜,鈦鎳酸鍶。將此薄膜應用於電阻式記憶體,發現元件特性有大幅提升的效果,如: 使用新溶膠-凝膠製備鈦酸鍶鎳薄膜在軟性基板上進行。鈦鎳酸鍶電阻式記憶體的阻值比可提升至106。由於此種手法所添加的乙酰丙酮鎳具有兩對雙牙基,除了可以使薄膜更平坦外,更能與鈦金屬離子起到螯合作用,使記憶體元件在大氣中放置多天後,仍能觀察到以下電性,如: 鈦鎳酸鍶電阻式記憶體的阻態電流均勻性,仍可維持在105;而鈦鎳酸鍶電阻式記憶體的阻值比在放置90天後可維持104。但鈦酸鍶電阻式記憶體的阻態電流分不均勻性,仍可維持在103;而鈦鎳酸鍶電阻式記憶體的阻值比在放置90天後可維持102。
    在鈦鎳酸鍶電阻式記憶體中用不同上電極鋁(Al),鈦(Ti),鎢(W),金(Au)和鉑(Pt)來探測開關行為。在鋁/鈦鎳酸鍶/氧化銦錫(ITO)/玻璃和鉑/鈦鎳酸鍶/氧化銦錫/玻璃電阻式記憶體中,寫入電壓和抹除電壓的雙極性電阻開關行為處於相反的偏置,歸因於氧化銦錫中頂部電極的不同功函數。擬合結果和溫度相關性能的分析表明,鋁/鈦鎳酸鍶/氧化銦錫轉換主要歸因於氧基官能團的吸收/釋放,而鉑/鈦鎳酸鍶/氧化銦錫轉換可能與金屬的擴散電極離子有關。鋁/鈦鎳酸鍶/氧化銦錫電阻式記憶體在表現出高電阻比106,並且滯留時間(retention time) 105秒。而且,鉑/鈦鎳酸鍶/氧化銦錫電阻式記憶體顯示出電阻比103和滯留時間(retention time) 105秒。
    通過鎳/二氧化鈦/鈦二極體和鋁/鈦鎳酸鍶/鉑電阻式以抑制潛行電流於一個雙極型二極體一電阻式(1D1R)交叉點陣列記憶體裝置中。通過鎳/二氧化鈦/鈦二極體的反向偏置電流可以獲得均勻的電阻開關特性。實驗結果表明,雙極性1D1R記憶體元件在低電阻狀態下具有可再現性,均勻性和自校正電阻切換行為。 實現高電流開/關阻值比(> 105)和令人滿意的滯留時間(retention time)(>> 105秒)。 因此,所提出的元件展現出用於高密度集成非發揮性記憶體應用的高潛力。
    採用一個有機薄膜電晶體和一個電阻式記憶體元件連接成功展示避免只有串擾問題。有機薄膜電晶體元件使用鋯鎳酸鋇作為介電層,表現出良好的電性能,如高場效應遷移率2.5cm2 / Vs,臨界電壓-2.8V和低漏電流10-12A,對於1T1R運行方案中的操作方案。 1T1R架構是二氧化鈦電阻式元件相接使用BZN 有機薄膜電晶體元件可以顯示出較低的工作電流(10μA)和可靠的滯留數據(十年以上)。 1T1R有良好性能可歸因於額外的障礙通過使用Ni(II)乙酰丙酮作為乙酰丙酮的替代物而引入高度,並且相對較高BZN介電層的低漏電流。建議的1T1R元件具有低漏電流有機薄膜電晶體和電阻式記憶體良好的電阻均勻分佈。
    在軟性基板上使用一個電阻式的鉑/鋯鎳酸鎂/鋁元件和一個選擇器的鎳/二氧化鈮/鎳元件來抑制潛行電流。 所提出的靈活的一個選擇器和一個電阻式(1S1R)記憶體元件具有低操作電壓,良好的開/關比105,均勻的電流分佈,優異的靈活性以及85°C下穩定的I-V曲線。靈活的1S1R記憶體元件的良好選擇和存儲特性對於高密度和低功耗的軟性電子應用而言是非常有前途的。

    In this dissertation, the perovskite oxides and biomaterial were prepared by solution process and applied to the nonvolatile memory、diode、organic thin film transistor and selector applications. Hence, the dissertation is divided into four parts, one is the investigation of sol-gel perovskite oxide-based devices; the second part is the study of diodes in memory; the third part is the application of organic thin-film transistors in memory; the fourth part is the application of the selector to memory.
    A reduced high-resistance state (HRS) current assists in obtaining high ON/OFF ratio and is beneficial to operation flexibility. This study proposes that less difference in the atomic radius of alkaline earth oxide-based memory de- vices is beneficial to reduce the HRS current. Forming-free resistive-switching behavior in the alkaline earth oxide-based memory device using magnesium titanate (MTO), strontium titanate (STO), and barium titanate (BTO) thin films is fabricated by sol-gel method. The dependence of HRS current on the difference in atomic radius was predicted by the Hume–Rothery rule and confirmed experimentally. The hydrolyzed particles, surface roughness, and density of oxygen vacancy were decreased when the difference in atomic radius between the Ti element and alkaline earth metal was less. Compared with the BTO thin film, the MTO thin film has fewer particles, smoother surface, and less density of oxygen vacancy, resulting in lower HRS current. Thus, suitable element selection for the alkaline earth oxide-based memory devices can reduce the HRS current.
    This paper investigated the performance of flexible resistive random access memory devices based on simple spin-coated sol–gel-derived strontium titanate nickelate (STN) thin films on polyethylene terephthalate substrate. A high on/off ratio of 105 and a uniform current distribution were demonstrated. The strong bonding between bidentate ligands of nickel (II) acetylacetone and titanium metal ion enabled the chelation effect, which contributed to the stability of the STN thin film, especially for moisture resistivity. Fourier transform infrared spectroscopy analysis was utilized to examine the effects on the resistive switching behaviors after 90 days under an atmospheric environment according to the chelation effect of the STN thin films. The devices were fabricated on a flexible plastic substrate, and they exhibited excellent durability upon repeated bending tests. They demonstrated good potential application for flexible and low-cost memory devices.
    Strontium titanate nickelate (STN) thin films on indium tin oxide (ITO)/glass substrate were synthesized using the sol-gel method for resistive random access memory (RRAM) applications. Aluminum (Al), titanium (Ti), tungsten (W), gold (Au) and platinum (Pt) were used as top electrodes in the STN-based RRAM to probe the switching behavior. The bipolar resistive switching behavior of the set and reset voltages is in opposite bias in the Al/STN/ITO and Pt/STN/ITO RRAMs, which can be partly ascribed to the different work functions of top electrodes in the ITO. Analyses of the fitting results and temperature-dependent performances showed that the Al/STN/ITO switching was mainly attributed to the absorption/release of oxygen-based functional groups, whereas the Pt/STN/ITO switching can be associated with the diffusion of metal electrode ions. The Al/STN/ITO RRAM demonstrated a high resistance ratio of >106 between the high-resistance state (HRS) and the low-resistance state (LRS), as well as a retention ability of >105 s. Furthermore, the Pt/STN/ITO RRAM displayed a HRS/LRS resistance ratio of >103 and a retention ability of >105 s.
    A bipolar-type one diode one resistor (1D1R) memory device is proposed and demonstrated by integrating a Ni/TiO2/Ti diode and an Al/Strontium Titanate Nickelate (STN)/Pt bipolar resistive random access memory cell to suppress undesired sneak current in a cross-point array. Uniform self-compliance resistive-switching characteristics can be achieved by reverse bias current of the Ni/TiO2/Ti diode. Experimental results show that the bipolar 1D1R memory device has reproducible, uniform, and selfrectifying resistive-switching behavior in low-resistance state. High current ON/OFF ratio (>105) and satisfactory retention (>>105 s) are achieved. Therefore, the proposed device exhibits high potential for high-density integrated nonvolatile memory applications.
    A one-transistor and one-resistor (1T1R) architecture with a resistive random access memory (RRAM) cell connected to an organic thin-film transistor (OTFT) device is successfully demonstrated to avoid the cross-talk issues of only one RRAM cell. The OTFT device, which uses barium zirconate nickelate (BZN) as a dielectric layer, exhibits favorable electrical properties, such as a high field-effect mobility of 2.5 cm2/Vs, low threshold voltage of -2.8 V, and low leakage current of 10-12 A, for a driver in the 1T1R operation scheme. The 1T1R architecture with a TiO2-based RRAM cell connected with a BZN OTFT device indicates a low operation current (10 μ A) and reliable data retention (over ten years). This favorable performance of the 1T1R device can be attributed to the additional barrier heights introduced by using Ni (II) acetylacetone as a substitute for acetylacetone, and the relatively low leakage current of a BZN dielectric layer. The proposed 1T1R device with low leakage current OTFT and excellent uniform resistance distribution of RRAM exhibits a good potential for use in practical low-power electronic applications.
    The use of a threshold-switching Ni/NbO2/Ni device with a memory-switching Pt/magnesium zirconate titanate (MZT)/Al device on a flexible substrate was proposed to suppress undesired sneak currents. The proposed flexible one selector and one resistor (1S1R) memory device exhibits a low operation voltage, good ON/OFF ratio of 105, uniform current distribution, excellent flexibility, and stable I–V curve at 85 °C. The good selection and memory properties of the flexible 1S1R memory device are highly promising for high-density and low-power flexible electronic applications.

    Abstract (in Chinese) I Abstract (in English) IV Acknowledgements VIII Contents X Table Captions XVI Figure Captions XVII CHAPTER 1. Introduction 1.1 Memories Background 1 1.1.1 Ferroelectric RAM (FeRAM) 3 1.1.2 Phase-change memory (PCM) 5 1.1.3 Magnetic Resistive memory (MRAM) 7 1.1.4 Resistive Random Access Memory (RRAM) 9 1.2 Development of selection devices for RRAM 24 1.2.1 One Diode - One Resistor (1D1R) 24 1.2.2 One Transistor - One Resistor (1T1R) 26 1.2.3 One Selector - One Resistor (1S1R) 29 1.3 Thesis Organization 31 1.4 References 34 CHAPTER 2. Experiment Details 2.1 Solution Preparation 39 2.1.1 Sol-Gel Precursor 39 2.2 RRAM Device Fabrication 45 2.2.1 Substrate Cleaning 45 2.2.2 Synthesis of Thin Film 45 2.2.3 Top Electrode deposition 45 2.3 One diode one resistor (1D1R) Device Fabrication 47 2.3.1 Substrate Cleaning 47 2.3.2 Diode device 47 2.3.3 Resistor device 47 2.4 One Transistor and resistor (1T1R) Fabrication 50 2.4.1 Substrate Cleaning 50 2.4.2 Gate Electrode 50 2.4.3 Synthesis of Thin Film 50 2.4.4 Active Layer 50 2.4.5 Bottom Electrode 50 2.4.6 Synthesis of Thin Film 51 2.4.7 Top Electrode 51 2.5 One Selector and One resistor (1S1R) Fabrication 53 2.5.1 Substrate Cleaning 53 2.5.2 Selector device 53 2.5.3 Bottom Electrode 53 2.5.4 Synthesis of Thin Film 53 2.5.5 Top Electrode 53 2.6 Measurements and Analysis 56 2.6.1 X-Ray Diffraction (XRD) 56 2.6.2 Atomic Force Microscopy (AFM) 56 2.6.3 Scanning Electron Microscope (SEM) 58 2.6.4 Transmission Electron Microscopy (TEM) 59 2.6.5 X-ray photoelectron spectroscopy (XPS) 59 2.6.6 RF Sputtering 60 2.6.7 Device Measurement Setup 61 CHAPTER 3. Resistive Switching Properties of Alkaline Earth Oxide-based Memory Devices 3.1 Introduction 62 3.2 Device Structure and Fabrication 64 3.3 Results and Discussion 66 3.3.1 The Physical Analysis of Thin Films 66 3.3.2 The Electrical Properties of Memory Devices 70 3.3.3 The Stability of Memory Device 75 3.4 Summary 79 3.5 References 80 CHAPTER 4. Effects of Ni in Strontium Titanate Nickelate Thin Films for Flexible Nonvolatile Memory Applications 4.1 Introduction 83 4.2 Device Structure and Fabrication 86 4.3 Results and Discussion 89 4.3.1 The Physical Properties of Thin Films 89 4.3.2 The Electrical Properties of Memory Devices 96 4.3.3 The Stability of Memory Device 104 4.4 Summary 113 4.5 References 114 CHAPTER 5. Effects of Electrodes on the Switching Behavior of Strontium Titanate Nickelate Resistive Random Access Memory 5.1 Introduction 119 5.2 Device Structure and Fabrication 122 5.3 Results and Discussion 125 5.3.1 The Physical Properties of Thin Film 125 5.3.2 The Electrical Properties of Device 125 5.3.3 The Effect of Sintering Temperature 131 5.3.4 The Stability of Memory Device 133 5.4 Summary 138 5.5 References 139 CHAPTER 6. Bipolar and Rewritable Switching of One Diode-One Resistor Nonvolatile Strontium Titanate Nickelate Mmemory Devices 6.1 Introduction 142 6.2 Device Structure and Fabrication 145 6.3 Results and Discussion 149 6.3.1 The Physical Properties of Thin Films 149 6.3.2 The Electrical Properties of Memory Devices 155 6.3.3 The Stability of Memory Device 158 6.4 Summary 165 6.5 References 166 CHAPTER 7. 1T1R Nonvolatile Memory with Al/TiO2/Au and Sol-Gel-Processed Insulator for Barium Zirconate Nickelate Gate in Pentacene Thin Film Transistor 7.1 Introduction 170 7.2 Device Structure and Fabrication 173 7.3 Results and Discussion 176 7.3.1 The Electrical Properties of Memory Devices 176 7.3.2 The Stability of Memory Device 181 7.3.3 The Mechanism Model of Memory Devices 183 7.4 Summary 185 7.5 References 186 CHAPTER 8. Bipolar Resistive Switching Characteristics in Flexible Pt/MZT/Al Memory and Ni/NbO2/Ni Selector Structure 8.1 Introduction 188 8.2 Device Structure and Fabrication 191 8.3 Results and Discussion 193 9.3.1 The Physical Properties of Thin Films 193 9.3.2 The Electrical Properties of Memory Devices 196 9.3.3 The Stability of Memory Device 203 8.4 Summary 209 8.5 References 210 CHAPTER 9. Conclusions and Future Prospects 9.1 Conclusions 216 9.2 Future prospects 218 Publication List of Ke-Jing Lee 219

    [1-01] 簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生,先進記憶體簡介,國研科技創刊號。
    [1-02] 儀科中心簡訊 68 期,中華民國 94 年 4 月 30 日出版。
    [1-03] M. Wuttig, N. Yamada,“Phase-change materials for rewriteable data storage," nature materials,”vol. 6, pp. 824-832, Nov 2007.
    [1-04] A. Redaelli, A. Pirovano, A. Benvenuti, A. L. Lacaita,“Threshold switching and phase transition numerical models for phase change memory simulations,”Journal of Applied Physics, vol. 103, p. 18, Jun 2008.
    [1-05] Stefan Lai, “Current status of the phase change memory and its future,” Intel Corporation, IEEE IEDM, vol.03-255, p.10.1.1, Dec 2003.
    [1-06] Vicent Cros, Albert Fert, Pierre Seneor, Fredencric Petroff, “The 2007 Nobel Prize in Physics: Albert Fert and Petter Grunberg,” The Spin Progress in Mathematical Physics, vol.55, pp.147-157, 2009.
    [1-07] T. Miyazaki, N. Tezuka, “Giant magnetic tunneling effect in Fe/Al2O3/Fe junction,” J. Magn. Magn. Mater., vol.139, pp.L231-L234, Jan 1995.
    [1-08] W. W. Zhuang, W. Pan, B. D. Ulrich, J. J. Lee, L. Stecker, A. Burmaster, D. R. Evans, S. T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, K. Sakiyama, Y. Wang, S. Q. Liu, N. J. Wu, A. Ignatie, “Novell Crossal Magnetoresistive Thin Film Nonvolatile Resistance Random Access Memory,” International Electron Devices Meeting (IEDM), vol. 193, p.7.5.1, Dec. 2002.
    [1-09] T. W. Hickmott, “Low‐frequency negative resistance in thin anodic oxide films,” J. Appl. Phys., vol. 33, no. 9, pp. 2669–2682, 1962.
    [1-10] R. Waser, M. Aono, “Nanoionics-based resistive switching memories,” Nat. Mater., vol. 6, pp. 833-840, 2007.
    [1-11] J. J. Yang, M. D. Pickett, X. M. Li, D. A. A. Ohlberg, D. R. Stewart, R. S. Williams, “Memristive switching mechanism for metal/oxide/metal nanodevices,” Nature Nanotechnology, vol. 3, pp. 429-433 , 2008.
    [1-12] C. Y. Liu, A. Wang, W. Y. Jang, T. Y. Tseng, “ Electrical properties of resistance switching V-doped SrZrO3 films on textured LaNiO3 bottom electrodes, ” J. Phys. , D, Appl. Phys. Lett., vol. 39, p.1156, 2006.
    [1-13] C. Y. Liu, T. Y. Tseng, “Resistance switching properties of sol–gel derived SrZrO3 based memory thin films,” J. Phys. D-Appl. Phys., vol.40, pp.2157-2161, 2007.
    [1-14] J. J. Yang, F. Miao, M. Pickett, D. Ohlberg, D. Steward, C. Lau, and R. S. Williams, “The mechanism of electroforming of metal oxide memristive switches,” Nanotechnology, vol. 20, p. 215201, 2009.
    [1-15] T. Fujii, M. Arita, K. Hamada, H. Kondo, H. Kaji, Y. Takahashi, M. Moniwa, I. Fujiwara, T. Yamaguchi, M. Aoki, Y. Maeno, T. Kobayashi, M. Yoshimaru, “I-V measurement of NiO nanoregion during observation by transmission electron microscopy,” J. Appl. Phys., vol. 109, p. 053702, 2011.
    [1-16] R.Waser, R. Dittmann, G. Staikov, K. Szot, “Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges,” Advanced Material, vol.21, pp.2632–2663, 2009.
    [1-17] S. M. Sze, “Physics of Semiconductor Device,” 2nd ed., New York: John Wiley & Sons, pp. 402-407, 1981.
    [1-18] A. Sawa, “Resistive switching in transition metal oxides Materialstoday,” vol. 11, no.6, pp. 28-36, 2008.
    [1-19] Dirk Wouters, “Resistive switching materials and devices for future memory applications,” 43rd IEEE Semiconductor Interface Specialists Conference, Tutorial SISC San Diego, 2012.
    [1-20] R. Waser, M. Aono, “Nanoionics-based resistive switching memories,” Nature Materials vol.6, pp.833-840, 2007.
    [1-21] L. Myoung-Jae, P. Youngsoo, K. Bo-Soo, A. Seung-Eon, L. Changbum, K. Kihwan, X. Wenxu, G. Stefanovich, L. Jung-Hyun, C. Seok-Jae, K. Yeon-Hee, L. Chang-Soo, P. Jong-Bong, Y. In-Kyeong, “2-stack 1D-1R Cross-point Structure with Oxide Diodes as Switch Elements for High Density Resistance RAM applications,” in Electron Devices Meeting. IEDM 2007, IEEE International, pp. 771-774, 2007.
    [1-22] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, M. J. Tsai, ”Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM,” in IEDM Tech. Dig., 2008.
    [1-23] J. Shin, I. Kim, K. P. Biju, M. Jo, J. Park, J. Lee, S. Jung, W. Lee, S. Kim, S. Park, H. Hwang,“TiO2-based metal-insulator-metal selection device for bipolar resistive random access memory cross-point application,” J. Appl. Phys., vol. 109, no.3, p. 033712, 2011.
    [1-24] Byungjin Cho, Tae-Wook Kim, Sunghoon Song, Yongsung Ji, Minseok Jo, Hyunsang Hwang, Gun-Young Jung, Takhee Lee,“Rewritable Switching of One Diode–One Resistor Nonvolatile Organic Memory Devices,” Adv. Mater., vol. 22, pp.1228–1232, 2010.
    [1-25] Y. Sasago, M. Kinoshita, T. Morikawa, K. Kurotsuchi, S. Hanzawa, T. Mine, A.Shima, Y. Fujisaki, H. Kume, H. Moriya, N. Takaura, K. Torii,“Cross-point phase change memory with 4F2 cell size driven by low-contact-resistivity poly-Si diode,” in VLSI Symp. Tech. Dig., pp. 24-25, 2009.
    [1-26] D. Walczyk , Ch. Walczyk , T. Schroeder , T. Bertaud , M. Sowin’ ska , M. Lukosius , M. Fraschke , B. Tillack , Ch. Wenger, “Resistive switching characteristics of CMOS embedded HfO2-based 1T1R cells,” Microelectronic Engineering, vol.88, pp. 1133–1135, 2011.
    [1-27] F. Nardi, D. Ielmini, C. Cagli, S. Spiga, M. Fanciulli, L. Goux, D. J. Wouters,“Sub-10 μA reset in NiO-based resistive switching memory (RRAM) cells, ”in Proc.Int. Memory Workshop, pp. 1–4, 2010.
    [1-28] K. Kinoshita, K. Tsunoda, Y. Sato, H. Noshiro, S. Yagaki, M. Aoki, Y. Sugiyama,“Reduction in the reset current in a resistive random access memory consisting of NiOx brought about by reducing a parasitic capacitance, ”Appl. Phys. Lett., vol. 93, no. 3, p. 033506, 2008.
    [1-29] J. Shin, I. Kim, K. P. Biju, M. Jo, J. Park, J. Lee, S. Jung, W. Lee, S. Kim, S. Park, H. Hwang,“TiO2-based metal-insulator-metal selection device for bipolar resistive random access memory cross-point application,”J. Appl. Phys., vol. 109, no.3, p. 033712, 2011.
    [1-30] P. Y. Chen, S. Yu, “Compact modeling of RRAM devices and its applications in 1T1R and 1S1R array design,” IEEE Trans. Electr. Dev., vol. 62, no. 12, pp. 4022-4028, 2015. 
    [3-01] Y. Deng, P. Huang, B. Chen, X. Yang, B. Gao, J. Wang, L. Zeng, G. Du, J. Kang, X. Liu,“RRAM crossbar array with cell selection device: a device and circuit interaction study,” IEEE Trans. Electron Devices, vol. 60, pp.719–726, 2013.
    [3-02] H. Baek, C. Lee, J. Choi, J. Cho, “Nonvolatile memory devices prepared from sol−gel derived niobium pentoxide films,” Langmuir, vol., pp. 29380–386, 2013.
    [3-03] J.C. Wang, C.H. Hsu, Y.R. Ye,“Performance improvement of gadolinium oxide resistive random access memory treated by hydrogen plasma immersion ion implantation,” J. Vac. Sci. Technol. A, vol. 32, p.02B108, 2014.
    [3-04] T.M. Tsai, K.C. Chang, R. Zhang, T.C. Chang, J.C. Lou, J.H. Chen, T.F. Young, B.H. Tseng, C.C. Shih, Y.C. Pan, M.C. Chen, J.H. Pan, Y.E. Syu, S.M. Sze ,“Performance and characteristics of double layer porous silicon oxide resistance random access memory,” Appl. Phys. Lett., vol. 102, p. 253509, 2013.
    [3-05] Y.H. Hwang, H.M. An, W.J. Cho,“Performance improvement of the resistive memory properties of InGaZnO thin films by using microwave irradiation,” Jpn. J. Appl. Phys., vol.53, p. 04EJ04, 2014.
    [3-06] Y.C. Chang, K.J. Lee, C.J. Lee, L.W. Wang, Y.H. Wang,“Bipolar resistive switching behavior in sol-gel MgTiNiOx memory device,” IEEE Journal of the Electron Devices Society, vol. 4, pp.321–327, 2016.
    [3-07] A. Kim, K. Song, Y. Kim, J. Moon,“All solution-processed, fully transparent resistive memory devices,” ACS Appl. Mater. Interfaces, vol.3, pp. 4525–4530, 2011.
    [3-08] W.Y. Chang, Y.T. Ho, T.C. Hsu, F. Chen, M.J. Tsai, T.B. Wu,“Influence of crystalline constituent on resistive switching properties of TiO2 memory films,” Electrochem. Solid-State Lett., vol.12, pp. H135–H137, 2009.
    [3-09] H.W. Huang, C.F. Kang, F. Lai, J.H. He, S.J. Lin, Y.L. Chueh,“ Stability scheme of ZnO-thin film resistive switching memory: influence of defects by controllable oxygen pressure ratio,” Nanoscale Res. Lett., vol. 8, p. 483, 2013.
    [3-10] M.M. Can, S.I. Shah, M.F. Doty, C.R. Haughn, T. Fırat,“Electrical and optical properties of point defects in ZnO thin films,” J. Phys. D. Appl. Phys., vol. 45, p. 195104, 2012.
    [3-11] Y.C. Chang, R.Y. Xue, Y.H. Wang,“Multilayered barium titanate thin films by sol-gel method for nonvolatile memory application,” IEEE. Electron Devices, vol. 61, pp. 4090–4096, 2014.
    [3-12] S.Y. Wang, D.Y. Lee, T.Y. Tseng, C.Y. Lin,“Effects of Ti top electrode thickness on the resistive switching behaviors of RF-sputtered ZrO2 memory films,” Appl. Phys. Lett., vol. 95, pp. 112904-1–112904-3, 2009.
    [3-13] Y.H.Wu, J.R.Wu, C.Y. Hou, C.C. Lin, M.L. Wu, L.L. Chen,“ZrTiOx-based resistive memory with MIS structure formed on Ge layer,” IEEE Electron Device Letters, vol. 33, pp. 435–437, 2012.
    [3-14] S.Z. Rahaman, S. Maikap, T.C. Tien, H.Y. Lee, W.S. Chen, F.T. Chen, M.J. Kao, M.J. Tsai,“Excellent resistive memory characteristics and switching mechanism using a Ti nanolayer at the Cu/TaOx interface,” Nanoscale Res. Lett., vol. 7, p.345, 2012.
    [3-15] S.W. Ryu, S. Cho, J. Park, J. Kwac, H.J. Kim, Y. Nishi,“Effects of ZrO2 doping on HfO2 resistive switching memory characteristics,” Appl. Phys. Lett., vol. 105, p. 072102, 2014.
    [3-16] A. Prakash, S. Maikap, C.S. Lai, T.C. Tien, W.S. Chen, H.Y. Lee, F.T. Chen, M.J. Kao, M.J. Tsai,“Bipolar resistive switching memory using bilayer TaOx/WOx films,” Solid State Electron., vol. 77, pp. 35–40, 2012.
    [3-17] P.-H. Chen, K.-C. Chang, T.-C. Chang, T.-M. Tsai, C.-H. Pan, T.-J. Chu, M.-C. Chen, H.-C. Huang, I. Lo, J.-C. Zheng, S.M. Sze, “Bulk oxygen–ion storage in indium–tin–oxide electrode for improved performance of HfO2-based resistive random access memory,” IEEE Electron Device Lett., vol. 37, pp. 280–283, 2016.
    [4-01] K. M. Kim, B. J. Choi, Y. C. Shin, S. Choi, C. S. Hwang, “Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films,” Appl. Phys. Lett., vol. 91, no. 1, pp. 12907–13100, 2007.
    [4-02] S. Kim, H. Moon, D. Gupta, S. Yoo, Y.-K. Choi, “Resistive switching characteristics of sol–gel zinc oxide films for flexible memory applications,” IEEE Trans. Electron Devices, vol. 56, no. 4, pp. 696–699, 2009.
    [4-03] Z. Q. Wang, H. Y. Xu, X. H. Li, X. T. Zhang, Y. X. Liu, Y. C. Liu, “Flexible resistive switching memory device based on amorphous InGaZnO film with excellent mechanical endurance,” IEEE Electron Device Lett., vol. 32, no. 10, pp. 1442–1444, 2011.
    [4-04] K. I. Chou, C. H. Cheng, Z. W. Zheng, M. Liu, A. Chin,“Ni/GeOx /TiOy /TaN RRAM on flexible substrate with excellent resistance distribution,” IEEE Electron Device Lett., vol. 34, no. 4, pp. 505–507, 2013.
    [4-05] K.-J. Lee, L.-W. Wang, T.-K. Chiang, Y.-H. Wang, “Effects of electrodes on the switching behavior of strontium titanate nickelate resistive random access memory,” Materials, vol. 8, no. 10, pp. 7191–7198, 2015.
    [4-06] A. Tanioka, K. Miyasaka, K. Ishikawa, “Reconstitution of collagen-fold structure with stretching of gelatin film,” Biopolymers, vol. 15, no. 8, pp. 1505–1511, 1976.
    [4-07] W. A. Herrmann, N. W. Huber, O. Runte, “Volatile metal alkoxides according to the concept of donor functionalization,” Angew. Chem. Int. Ed. English, vol. 34, no. 20, pp. 2187–2206, 1995.
    [4-08] W.-T. Wu, J.-J. Wu, J.-S. Chen, “Resistive switching behavior and multiple transmittance states in solution-processed tungsten oxide,” ACS Appl. Mater. Interfaces, vol. 3, no. 7, pp. 2616–2621, 2011.
    [4-09] J. A. Lewis, E. B. Duoss, M. Twardowski, “Sol-gel inks,” U.S. Patent, 0 245 266 A1, 2008.
    [4-10] A. MarquezHerrera, V. M. OvandoMedina, B. E. CastilloReyes, M. MelendezLira, M. ZapataTorres, N. Saldana, “A novel synthesis of SrCO3–SrTiO3 nanocomposites with high photocatalytic activity,” J. Nanoparticle Res., vol. 16, p. 2804, 2014.
    [4-11] K.-K. Chiang, J.-S. Chen, J.-J. Wu, “Aluminum electrode modulated bipolar resistive switching of Al/Fuel-assisted NiOx /ITO memory devices modeled with a dual-oxygen-reservoir structure,” ACS Appl. Mater. Interfaces, vol. 4, no. 8, pp. 4237–4245, 2012.
    [4-12] A. Kim, K. Song, Y. Kim, J. Moon, “All solution-processed, fully transparent resistive memory devices,” ACS Appl. Mater. Interfaces, vol. 3, no. 11, pp. 4525–4530, 2011.
    [4-13] C.-C. Lin, C.-Y. Lin, M.-H. Lin, C.-H. Lin, T.-Y. Tseng,“Voltage-polarity-independent and high-speed resistive switching properties of V-doped SrZrO3 thin films,” IEEE Trans. Electron Device, vol. 54, no. 12, pp. 3146–3151, Dec. 2007.
    [4-14] A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, D. Widmer,“Reproducible switching effect in thin oxide films for memory applications,” Appl. Phys. Lett., vol. 77, no. 1, pp. 139–141, 2000.
    [4-15] J.-W. Park, J.-W. Park, M. K. Yang, K. Jung, D.-Y. Kim, J.-K. Lee,“Low-voltage resistive switching of polycrystalline SrZrO3: Cr thin films grown on Si substrates by off-axis RF sputtering,” J. Vacuum Sci. Technol. A, Vacuum Surfaces, Films, vol. 24, no. 4, pp. 970–973, 2006.
    [4-16] Z. S. Wang, F. Zeng, J. Yang, C. Chen, Y. Yang, F. Pan, “Reproducible and controllable organic resistive memory based on Al/poly(3, 4-ethylene-dioxythiophene): Poly(styrenesulfonate)/Al structure,” Appl. Phys. Lett., vol. 97, p. 253301, Dec. 2010.
    [4-17] H.-S. P. Wong et al., “Metal-oxide RRAM,” Proc. IEEE, vol. 100, no. 6, pp. 1951–1970, 2012.
    [4-18] X. Sudesh, N. Kumar, S. Das, C. Bernhard, G. D. Varma,“Effect of graphene oxide doping on superconducting properties of bulk MgB2,” Supercond. Sci. Technol., vol. 26, no. 9, p. 095008, 2013.
    [4-19] M. N. A. Al-Jibouri, S. A. H. Al-Ameri, W. M. Al-Jibouri, and M. A. K. Al-Souz, “Spectroscopic study of the effect of a new metal chelate on the stability of PVC,” J. Assoc. Arab Univ. Basic Appl. Sci., vol. 14, no. 1, pp. 67–74, 2013.
    [4-20] C.-Y. Lin, C.Y. Wu, C.Y. Wu, T.C. Lee, F.L. Yang, C. Hu, T.Y. Tseng, “Effect of top electrode material on resistive switching properties of ZrO2 film memory devices,” IEEE Electron Device Lett., vol. 28, no. 25, pp. 366–368, 2007.
    [4-21] X.-J. Zhu, J. Shang, R.-W. Li, “Resistive switching effects in oxide sandwiched structures,” Frontiers Mater. Sci., vol. 6, no. 3, pp. 183–206, 2012.
    [4-22] W. Banerjee, S. Maikap, S.Z. Rahaman, A. Prakash, T.C. Tien, W.C. Li, J.R. Yang, “Improved resistive switching memory characteristics using core-shell IrOx nano-dots in Al2O3/WOx bilayer structure,” J. Electrochem. Soc., vol. 159, no. 2, pp. H177–H182, 2012.
    [4-23] U. Celano, L. Goux, A. Belmonte, K. Opsomert, A. Franquet, A. Schulze, C. Detavernier, O. Richard, H. Bender, M. Jurczak, W. Vandervorst, “Three-dimensional observation of the conductive filament in nanoscaled resistive memory devices,” Nano Lett., vol. 14, no. 5, pp. 2401–2406, 2014.
    [4-24] S. Lee, H. Kim, D. J. Yun, S. W. Rhee, K. Yong, “Resistive switching characteristics of ZnO thin film grown on stainless steel for flexible nonvolatile memory devices,” Appl. Phys. Lett., vol. 95, no. 26, p. 262113, 2009.
    [4-25] J. W. Seo, J.W. Park, K.S, Lim, S.J. Kang, Y.H. Hong, J.H. Yang, L. Fang, G.Y. Sung, H.K. Kim, “Transparent flexible resistive random access memory fabricated at room temperature,” Appl. Phys. Lett., vol. 95, no. 13, p. 133508, 2009.
    [4-26] H. Y. Jeong, Y. I. Kim, J. Y. Lee, S.-Y. Choi, “A low-temperature grown TiO2-based device for the flexible stacked RRAM application,” Nanotechnology, vol. 21, no. 11, p. 115203, 2010.
    [4-27] J. Jang, F. Pan, K. Braam, V. Subramanian, “Resistance switching characteristics of solid electrolyte chalcogenide Ag2Se nanoparticles for flexible nonvolatile memory applications,” Adv. Mater., vol. 24, no. 26, pp. 3573–3576, 2012.
    [4-28] S. Mondal, C.-H. Chueh, T.-M. Pan, “High-performance flexible Ni/Sm2O−3/ITO ReRAM device for low-power nonvolatile memory applications,” IEEE Electron Device Lett., vol. 34, no. 9, pp. 1145–1147, 2013.
    [4-29] R.-C. Fang, Q.-Q. Sun, P. Zhou, W. Yang, P.-F. Wang, D. W. Zhan, “High-performance bilayer flexible resistive random access memory based on low-temperature thermal atomic layer deposition,” Nanosc. Res. Lett., vol. 8, pp. 1–7, 2013.
    [4-30] S. Mondal, J.-L. Her, K. Koyama, T.-M. Pan, “Resistive switching behavior in Lu2O3 thin film for advanced flexible memory applications,” Nanosc. Res. Lett., vol. 9, no. 1, pp. 1–8, 2014.
    [4-31] C.-C. Lin, H.-Y. Wu, N.-C. Lin, C.-H. Lin, “Graphene-oxide-based resistive switching device for flexible nonvolatile memory application,” Jpn. J. Appl. Phys., vol. 53, p. 05FD03, 2014.
    [4-32] C.-H. Cheng, F.-S. Yeh, A. Chin, “Low-Power high-performance non-volatile memory on a flexible substrate with excellent endurance,” Adv. Mater., vol. 23, no. 7, pp. 902–905, 2010.
    [5-01] M.J. Lee, Y. Park, D.S. Suh, E.H. Lee, S. Seo, D.C. Kim, R. Jung, B.S. Kang, S.E. Ahn, C.B. Lee, D.H. Seo, Y.K. Cha, I.K. Yoo, J.S. Kim, B.H. Park,“Two series oxide resistors applicable to high speed and high density nonvolatile memory,”Adv. Mater., vol. 19, pp. 3919–3923, 2007.
    [5-02] L. Goux, J.G. Lisoni, M. Jurczak, D.J. Wouters, L. Courtade, C. Muller,“ Coexistence of the bipolar and unipolar resistive-switching modes in NiO cells made by thermal oxidation of Ni layers,”J. Appl. Phys., vol. 107, p. 024512, 2010.
    [5-03] Z. Tang, Y. Xiong, M. Tang, C. Cheng, D. Xu, Y. Xiao, Y. Zhou,“Influence of substrates on resistive switching behaviors of V-doped SrTiO3thin films,”Jpn. J. Appl. Phys., vol. 53, p. 035503, 2014.
    [5-04] S. Gao, C. Song, C. Chen, F. Zeng, F. Pan,“Dynamic processes of resistive switching in metallic filament-based organic memory devices,”J. Phys. Chem. C, vol. 116, pp. 17955–17959, 2012.
    [5-05] Y.C. Chang, Y.H. Wang,“Resistive switching behavior in gelatin thin films for nonvolatile memory application,”ACS Appl. Mater. Interfaces, vol. 6, pp. 5413–5421, 2014.
    [5-06] A. Beck, J.G. Bednorz, C. Gerber, C. Rossel, D. Widmer,“Reproducible switching effect in thin oxide films for memory applications,”Appl. Phys. Lett., vol.77, p. 139, 2000.
    [5-07] Z.H. Tang, Y. Xiong, D.L. Xu, M.H. Tang, Z.P. Wang, Y.G. Xiao, B.W. Zeng, X.C. Gu, J.C. Li, L.H. Wang,“Resistive switching properties of sol-gel-derived V-doped SrTiO3 thin films,”J. Electron. Mater., vol. 42, pp. 2510–2515, 2013.
    [5-08] D.J. Seong, M. Jo, D. Lee, H. Hwang,“HPHA effect on reversible resistive switching of Pt/Nb-doped SrTiO3 schottky junction for nonvolatile memory application,”Electrochem. Solid State Lett., vol. 10, pp. 68–70, 2007.
    [5-09] M.C. Ni, S.M. Guo, H.F. Tian, Y.G. Zhao, J.Q. Li,“Resistive switching effect in SrTiO3 — δ/Nb-doped SrTiO3 heterojunction,”Appl. Phys. Lett., vol. 91, p. 183502, 2007.
    [5-10] Y. Zhu, M. Li, Z. Hu, X. Liu, X. Fang,“Fabrication and mechanism of high performance bipolar resistive switching device based on SrTiO3/NiO stacked heterostructure,”Microelectron. Eng., vol. 104, pp. 85–89, 2013.
    [5-11] K.J. Lee, Y.C. Chang, Y.H. Wang,“Synthesized strontium titanate nickelate thin films by sol-gel method for nonvolatile memory application,”Journal Of Physics D-Applied Physics, submitted.
    [5-12] K.K. Chiang, J.S. Chen, J.J. Wu,“Aluminum electrode modulated bipolar resistive switching of Al/fuel-assisted NiOx/ITO memory devices modeled with a dual-oxygen-reservoir structure,”ACS Appl. Mater. Interfaces, vol. 4, pp. 4237–4245, 2012.
    [5-13] F. Zhuge, B. Hu, C. He, X. Zhou, Z. Liu, R.W. Li,“Mechanism of nonvolatile resistive switching in graphene oxide thin films,”Carbon, vol. 49, pp. 3796–3802, 2011.
    [5-14] L.H. Wang, W. Yang, Q.Q. Sun, P. Zhou, H.L. Lu, S.J. Ding, Z.D. Wei,“The mechanism of the asymmetric SET and RESET speed of grapheme oxide based flexible resistive switching memories,”Appl. Phys. Lett., vol. 100, p. 063509, 2012.
    [5-15] H.S.P. Wong, , H.Y. Lee S. Yu, Y.S. Chen, Y. Wu, P.S. Chen, B. Lee, F.T. Chen, M.J. Tsai,“Metal-Oxide RRAM,”Proc. IEEE, vol. 100, pp. 1951–1970, 2012.
    [5-16] M.K. Yang, J.W. Park, T.K. Ko, J.K. Lee,“Bipolar resistive switching behavior in Ti/MnO2/Pt structure for nonvolatile memory devices,”Appl. Phys. Lett., vol. 95, p. 042105, 2009.
    [5-17] Y.C. Yang, F. Pan, Q. Liu, M. Liu, F. Zeng,“Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application,”Nano Lett., vol. 9, pp. 1636–1643, 2009.
    [5-18] F. Zhuge, W. Dai, C.L. He, A.Y. Wang, Y.W. Liu, M. Li, Y.H. Wu, P. Cui, R.W. Li, “Nonvolatile resistive switching memory based on amorphous carbon,”Appl. Phys. Lett., vol. 96, p. 163505, 2010.
    [5-19] X.B. Yan, Y.D. Xia, H.N. Xu, X. Gao, H.T. Li, R. Li, J. Yin, Z.G. Liu,“Effects of the electroforming polarity on bipolar resistive switching characteristics of SrTiO3 − δ films,”Appl. Phys. Lett., vol. 97, p. 112101, 2010.
    [5-20] M. Janousch, G.I. Meijer, U. Staub, B. Delley, S.F. Karg, B.P. Andreasson, “Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory,”Adv. Mater., vol. 19, pp. 2232–2235, 2007.
    [6-01] M. J. Lee, Y. Park, D. S. Suh, E. H. Lee, S. Seo, D. C. Kim, R. Jung, B. S. Kang, S. E. Ahn, C. B. Lee, D. H. Seo, Y. K. Cha, “Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory,” Adv. Materials, vol. 19, p. 3919, 2007.
    [6-02] X. A. Tran, W. Zhu, W. J. Liu, Y. C. Yeo, B. Y. Nguyen and H. Y. Yu, “A Self-Rectifying AlOy Bipolar RRAM with Sub-50-uA Set/Reset Current for Cross-Bar Architecture, ” IEEE Electron Device Lett. vol. 33, pp. 1402-1404, 2012.
    [6-03] Y. C. Shin, J. Song, K. M. Kim, B. J. Choi, S. Choi, H. J. Lee, G. H. Kim, T. Eom and C. S. Hwanga, “(In,Sn)2O3/TiO2/Pt Schottky-Type Diode Switch for The TiO2 Resistive Switching Memory Array, ”Appl. Phys. Lett. vol. 92, p. 162904, 2008.
    [6-04] B. Cho, T. W. Kim, S. Song, Y. Ji, M. Jo, H. Hwang, G. Y. Jung and T. Lee, ”Rewritable Switching Of One Diode–One Resistor Nonvolatile Organic Memory Devices, ” Adv. Mater. vol.22, p. 1228, 2010.
    [6-05] M. J. Lee, S. I. Kim, C. B. Lee, H. Yin, S. E. Ahn, B. S. Kang, K. H. Kim, J. C. Park, C. J. Kim, I. Song, S. W. Kim, G. Stefanovich, J. H. Lee, S. J. Chung, Y. H. Kim and Y. Park,” Low-Temperature-Grown Transition Metal Oxide Based Storage Materials and Oxide Transistors for High-Density Non-volatile Memory,” Adv. Funct. Mater., vol.19, p. 1587, 2009.
    [6-06] G. H. Kim, J. H. Lee, Y. Ahn, W. Jeon, S. J. Song, J. Y. Seok, J. H. Yoon, K. J. Yoon, T. J. Park and C. S. Hwang,“ 32 × 32 Crossbar Array Resistive Memory Composed of a Stacked Schottky Diode and Unipolar Resistive Memory, ”Adv. Funct. Mater., vol.23, p. 1440, 2013.
    [6-07] Z. J. Liu, J. Y Gan and T. R. Yew, “ZnO-Based One Diode-One Resistor Device Structure for Crossbar Memory Applications,” Appl. Phys. Lett., vol. 100, p. 153503, 2012.
    [6-08] Shima, F. Takano, H. Muramatsu, H. Akinaga, I. H. Inoue, and H. Takagi, “Control of Resistance Switching Voltages in Rectifying Pt/TiOx/Pt Trilayer,” Appl. Phys. Lett., vol. 92, p. 043510, 2008.
    [6-09] M. J. Lee, Y. Park, B. S. Kang, S. E. Ahn, C. Lee, K. Kim, W. Xianyu, G. Stefanovich, J. H. Lee, S. J. Chung, Y. H. Kim, C. S. Lee, J. B. Park, I. G. Baek, and I. K. Yoo, “2-Stack ID-IR Cross-Point Structure with Oxide Diodes as Switch Elements for High Density Resistance RAM Applications,” IEDM Tech. Dig., pp. 771-774, 2007.
    [6-10] M. J. Lee, C. B. Lee, S. Kim, H. Yin, J. Park, S. E. Ahn, B. S. Kang, K. H. Kim, G. Stefanovich, I. Song, S. W. Kim, J. H. Lee, S. J. Chung, Y. H. Kim, C. S. Lee, J. B. Park, I. G. Baek, C. J. Kim, and Y. Park, “Stack Friendly All-Oxide 3D RRAM Using Gainzno Peripheral TFT Realized Over Glass Substrates,”IEDM Tech. Dig., pp. 85–88, 2008.
    [6-11] H. Shima, F. Takano, H. Muramatsu, H. Akinaga, I. H. Inoue, and H. Takagi, “Control of Resistance Switching Voltages in Rectifying Pt/TiOx/Pt Trilayer,”Appl. Phys. Lett., vol. 92, p. 043510, 2008.
    [6-12] J. W. Seo, S. J. Baik, S. J. Kang, Y. H. Hong, J. H. Yang, and K. S. Lim,“ A ZnO Cross-Bar Array Resistive Random Access Memory Stacked with Heterostructure Diodes for Eliminating the Sneak Current Effect,”Appl. Phys. Lett., vol. 98, pp. 233505, 2011.
    [6-13] N. Raghavan, K. L. Pey, X. Li, W. H. Liu, X. Wu, M. Bosman, and T. Kauerauf, “Very Low Reset Current Achieved in Oxygen Vacancy Controlled Regime,”IEEE Electron Device Lett., vol. 32, pp. 716–718, 2011.
    [6-14] K. J. Lee, L. W. Wang, T. K. Chiang, and Y. H. Wang,“ Effects of Electrodes on the Switching Behavior of Strontium Titanate Nickelate Resistive Random Access Memory,”Materials, vol. 8, pp. 7191–7198, 2015.
    [6-15] S. Z. Chen, P. Y. Zhang, W. P. Zhu, L. Chen, and S. M. Xu, “Deactivation of TiO2 photocatalytic films loaded on aluminium: XPS and AFM analyses,”Appl. Surf. Sci., vol. 252, pp. 7532-7538, 2006.
    [6-16] Z. H. Tang, Y. Xiong, M. H. Tang, C. Cheng, D. L. Xu, Y. G. Xiao, and Y. Zhou,” Influence of substrates on resistive switching behaviors of V-doped SrTiO3 thin films,” Jpn. J. Appl. Physics, vol. 53, p. 035503, 2014.
    [6-17] A. Marquez-Herrera, V. M. Ovando-Medina, B. E. Castillo-Reyes, M. Melendez-Lira, M. Zapata-Torres and N. Saldana,” A novel synthesis of SrCO3–SrTiO3 nanocomposites with high photocatalytic activity,”J Nanopart Res, vol. 16, p. 2804, 2014.
    [6-18] Q. Yu, Y. Liu, T. P. Chen, Z. Liu, Y. F. Yu, and S. Fung,” Competition of Resistive-Switching Mechanisms in Nickel-RichNickel Oxide Thin Films,”Electrochem. Solid-State Lett., vol. 14, No.10, pp. 400-403, 2011.
    [6-19] A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, and D. Widmer,” Reproducible switching effect in thin oxide films for memory applications,” Appl. Phys. Lett., Vol. 77, 139–141, 2000.
    [6-20] R. Waser, and M. Aono,” Nanoionics-based resistive switching memories,” Nature Materials, vol. 6, pp. 833–840, 2007.
    [6-21] Y. T. Li, S. B. Long, H. B. Lv, Q. Liu, M. Wang, H. W. Xie, K. W. Zhang, X.Y. Yang, and M. Liu,” Novel Self-Compliance Bipolar 1D1R Memory Device for High-density RRAM Application,” In IMW IEEE International Memory Workshop, pp. 184–187, 2013.
    [6-22] H. S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T. Chen, and M. J. Tsai,” Metal–oxide RRAM,” Proceedings of the IEEE, vol.100, pp. 1951–1970, 2012.
    [6-23] C. C. Lin, C. Y. Lin, M. H. Lin, C. H. Lin, T. Y. Tseng,” Voltage-Polarity-Independent and High-Speed Resistive Switching Properties of V-Doped SrZrO3 Thin Films,” IEEE Transactions Electron Device, vol. 54, pp. 3146–3151, 2007.
    [6-24] W. T. Wu, J. J. Wu, and J. S. Chen,” Resistive Switching Behavior and Multiple Transmittance States in Solution-Processed Tungsten Oxide,” ACS Appl. Mater. Interfaces, vol. 3, pp. 2616–2621, 2011.
    [6-25] Y. C. Chang, K. J. Lee, C. J. Lee, L. W. Wang, and Y. H. Wang,” Bipolar Resistive Switching Behavior in Sol-Gel MgTiNiOx Memory Device,” IEEE Journal of the Electron Devices Society, accepted, 2016.
    [7-01] M.J. Yun, S. Kim, H.D. Kim, “Resistive switching characteristics of Al/Si3N4/p-Si MIS-based resistive switching memory devices,”J. Korean Phys. Soc., vol. 69, pp.435–438, 2016.
    [7-02] Y.C. Chang, C.Y. Wei, Y.Y. Chang, T.Y. Yang, Y.H. Wang, “High mobility pentacene based thin film transistors with synthesized strontium zirconate nickelate gate insulators,”IEEE Trans. Electron Devices, vol. 60, pp. 4234–4239, 2013.
    [7-03] C.-J. Lee, K.-J. Lee, Y.-C. Chang, L.-W. Wang, D.-W. Chou, Y.-H. Wang, “Barium zirconate nickelate as the gate dielectric for low-leakage current organic transistors,”IEEE Trans. Electron Devices, revised, 2017.
    [7-04] D. Walczyk, C. Walczyk, T. Schroeder, T. Bertaud, M. Sowin´ska, M. Lukosius, M. Fraschke, B. Tillack, C. Wenger,“Resistive switching characteristics of CMOS embedded HfO2-based 1T1R cells,”Microelectron. Eng., vol. 88, pp. 1133–1135, 2011.
    [7-05] M.-C. Wu, Y.-W. Lin, W.-Y. Jang, C.-H. Lin, T.-Y. Tseng,“Low-power and highly reliable multilevel operation in ZrO2 1T1R RRAM,”IEEE Trans. Electron Devices Lett., vol. 32, pp. 1026–1028, 2011.
    [7-06] Y. Ji, M. Choe, B. Cho, S. Song, J. Yoon, H.C. Ko, T. Lee,“Organic nonvolatile memory devices with charge trapping multilayer graphene film,”Nanotechnology, vol. 23, p. 105202, 2012.
    [7-07] Y.C. Chang, K.J. Lee, C.J. Lee, L.W. Wang, Y.H. Wang,“Bipolar resistive switching behavior in sol-gel MgTiNiOx memory device,”IEEE J. Electron Devices Soc., vol. 4, pp.321–327, 2016.
    [7-08] Y.C. Chang, R.Y. Xue, Y.H. Wang,“Multilayered barium titanate thin films by sol-gel method for nonvolatile memory application,”IEEE Trans. Electron Devices, vol.61, pp. 4090–4097, 2014.
    [7-09] Y.H. Hwang, H.M. An, W.J. Cho,“Performance improvement of the resistive memory properties of InGaZnO thin films by using microwave irradiation, ”Jpn. J. Appl. Phys., vol. 53, p. 04EJ04, 2014.
    [7-10] A. Younis, D. Chu, A.H. Shah, H. Du, S. Li,“Interfacial redox reactions associated ionic transport in oxide-based memories,”ACS Appl. Mater. Interfaces, vol. 9, pp. 1585–1592, 2017.
    [7-11] K.K. Chiang, J.S. Chen, J.J. Wu,“Aluminum electrode modulated bipolar resistive switching of Al/fuel-assisted NiOx/ITO memory devices modeled with a dual-oxygen-reservoir structure,”ACS Appl. Mater. Interfaces, vol. 4, pp. 4237–4245, 2012.
    [7-12] S. Jung, J. Kong, S. Song, K. Lee, T. Lee, H. Hwang, S. Jeon,“Resistive switching characteristics of solution-processed transparent TiOx for nonvolatile memory application,”J. Electrochem. Soc., vol. 157, pp. H1042–H1045, 2010.
    [8-01] Y. Deng, P. Huang, B. Chen, X. Yang, B. Gao, J. Wang, L. Zeng, G. Du, J. Kang, X. Liu, “RRAM crossbar array with cell selection device: a device and circuit interaction study,” IEEE Trans. Electr. Dev., vol. 60, no. 2, pp. 719-726, 2012.
    [8-02] F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, “Recent progress in resistive random access memories: Materials, switching mechanisms, and performance,” Mater. Sci. Eng.: R: Reports, vol. 83, pp. 1-59, 2014.
    [8-03] Y. C. Chang, K. J. Lee, C. J. Lee, L. W. Wang, Y. H. Wang, “Bipolar resistive switching behavior in sol-gel MgTiNiOx memory device,” IEEE Journal of the Electron Devices Society, vol. 4, pp. 321– 327, 2016.
    [8-04] K. J. Lee, Y. C. Chang, C. J. Lee, Y. H. Wang, “Bipolar and rewritable switching of one diode–one resistor nonvolatile strontium titanate nickelate memory devices,” Vacuum, vol. 140, pp. 35-41, 2017.
    [8-05] S. Gao, F. Zeng, F. Li, M. Wang, H. Mao, G. Wang, C. Song, F. Pan, “Forming-free and self-rectifying resistive switching of the simple Pt/TaOx/n-Si structure for access device-free high-density memory application,” Nanoscale, vol. 7, pp. 6031-6038, 2015.
    [8-06] S. Gao, F. Zeng, M. Wang, G. Wang, C. Song, F. Pan, “Tuning the switching behavior of binary oxide based resistive memory devices by inserting an ultra-thin chemically active metal nanolayer: a case study on the Ta2O5–Ta system,” Phys. Chem. Chem. Phys., vol. 17, pp. 12849--12856, 2015.
    [8-07] S. Gao, F. Zeng, M. Wang, G. Wang, C. Song, F. Pan, “Implementation of Complete Boolean Logic Functions in Single Complementary Resistive Switch,” Sci. Rep., vol. 5, p. 15467, 2015.
    [8-08] F. A. Chudnovskii, L. L. Odynets, A. L. Pergament, G. B. Stefanovich, “Electroforming and switching in oxides of transition metals: the role of metal–insulator transition in the switching mechanism,” J. Solid State Chem., vol. 122, pp. 95–99, 1996.
    [8-09] K. Zhang, B. Wang, F. Wang, Y. Han, X. Jian, H. Zhang, H. S. P. Wong, “VO2-based selection device for passive resistive random access memory application,” IEEE Electron Device Lett., vol. 37, no. 8, pp. 978-981, 2016.
    [8-10] P. Y. Chen, S. Yu, “Compact Mmodeling of RRAM devices and its applications in 1T1R and 1S1R array design,” IEEE Trans. Electr. Dev., vol. 62, no. 12, pp. 4022-4028, 2015.
    [8-11] H. Pagnia, N. Sotnik, “Bistable Switching In Electroformed Metal– Insulator–Metal Devices,” Phys. Status Solidi A, vol. 108, pp. 11-65, 1988.
    [8-12] S. H. Chang, J. S. Lee, S. C. Chae, S. B. Lee, C. Liu, B. Kahng, D.-W. Kim, T. W. Noh, “Occurrence of both unipolar memory and threshold resistance switching in a NiO Film,” Phys. Rev. Lett., vol. 102, p. 026801, 2009.
    [8-13] M.-J. Lee, Y. Park, D.-S. Suh, E.-H. Lee, S. Seo, D.-C. Kim, R. Jung, B.-S. Kang, S.-E. Ahn, C. B. Lee, D. H. Seo, Y.-K. Cha, I.-K. Yoo, J.-S. Kim, B. H. Park, “Two series oxide resistors applicable to high speed and high density nonvolatile memory,” Adv. Mat., vol. 19, pp. 3919-3923, 2007.
    [8-14] S. Kim, X. Liu, J. Park, S. Jung, W. Lee, J. Woo, J. Shin, G. Choi, C. Cho, S. Park, D. Lee, E. Cha, B.-H. Lee, H. D. Lee, S. G. Kim, S. Chung, H. Hwang, “Ultrathin (<10 nm) Nb2O5/NbO2hybrid device and selector characteristics for high density 3D vertically stackable RRAM applications,” in Proc. VLSI Technol., pp. P155–P156, 2012.
    [8-15] M. ZackriyaV, H. M. Kittur, A. Chin, “A novel read scheme for large size one-resistor resistive random access memory array,” Scientific Reports, vol. 7, p. 42375, 2017.
    [8-16] E. Cha, J. Woo, D. Lee, S. Lee, J. Song, “Nanoscale (*10nm) 3D vertical ReRAM and NbO2 threshold selector with TiN electrode,” IEEE International Electron Devices Meeting, 2013.
    [8-17] S. Slesazeck, H. Maehne, H. Wylezich, A. Wachowiak, J. Radhakrishnan A. Ascoli, “Physical model of threshold switching in NbO2 based memristor,” RSC Adv., vol. 5, p. 102318, 2015.
    [8-18] C. Funck, S. Menzel, N. Aslam, H. Zhang, A. Hardtdegen, R. Waser, S. Hoffmann-Eifert, “Multidimensional simulation of threshold switching in NbO2based on an electric field triggered thermal runaway model,” Adv. Electron. Mater., vol. 2, p. 1600169, 2016.
    [8-19] J. Kim, C. Ko, A. Frenzel, S. Ramanathan, J. E. Hoffman, “Nanoscale imaging and control of resistance switching in VO2 at room temperature,” Appl. Phys. Lett., vol. 96, p. 213106, 2010.
    [8-20] M. D. Pickett, J. Borghetti , J. Joshua Yang , G. Medeiros-Ribeiro, R. S. Williams, “Coexistence of memristance and negative differential resistance in a nanoscale metal-oxide-metal system,” Adv. Mater., vol. 23, pp. 1730–1733, 2011.
    [8-21] M. D. Pickett, R. S. Williams, “Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide cross-point nano-devices,” Nanotechnology, vol. 23, p. 215202, 2012.
    [8-22] F. Mouraa, A. Z. Sim, B. D. Stojanovic, M. A. Zaghete, E. Longoa, J. A. Varela, “Dielectric and ferroelectric characteristics of barium zirconate titanate ceramics prepared from mixed oxide method,” J Alloys Compd., vol. 462, pp. 129–134, 2007.
    [8-23] M. Kang, S. Yu, J. Son, “Voltage-induced insulator-to-metal transition of hydrogen-treated NbO2 thin films,” J. Phys. D: appl. Phys., vol. 48, p. 095301, Feb. 2015.
    [8-24] F. J. Wong, N. Hong, S. Ramanathan, “Orbital splitting and optical conductivity of the insulating state of NbO2,“ Phys. Rev. B, vol. 90, p. 115135, 2014.
    [8-25] A. Kim, K. Song, Y. Kim, J. Moon, “All solution-processed, fully transparent resistive memory devices,” ACS Appl. Mater. Interfaces, vol. 3, pp. 4525-4530, 2011.
    [8-26] P. Huang, S. Chen, Y. Zhao, B. Chen, B. Gao, L. Liu, Y. Chen, Z. Zhang, W. Bu, H. Wu, X. Liu, J. Kang, “Self-Selection RRAM Cell With Sub-μA Switching Current and Robust Reliability Fabricated by High-K/Metal Gate CMOS Compatible Technology,” IEEE Trans. Electr. Dev., vol. 63, pp. 4295-4301, 2016.
    [8-27] M. A. Lampert, “Simplified theory of space-charge-limited currents in an insulator with traps,” Phys. Rev., vol. 103, p. 1648, 1956.
    [8-28] Y. C. Chang, R. Y. Xue, Y. H. Wang, “Multilayered barium titanate thin films by sol-gel method for nonvolatile memory application,” IEEE Trans. Electr. Dev., vol. 61, pp. 4090-4097, 2014.
    [8-29] Z. S. Wang, F. Zeng, J. Yang, C. Chen, Y. C. Yang, F. Pan, “Reproducible and controllable organic resistive memory based on Al/ poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate)/Al structure,” Appl. Phys. Lett., vol. 97, p. 253301, 2010.
    [8-30] H. S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T. Chen, M. J. Tsai, “Metal–oxide RRAM,” Proceedings of the IEEE, vol. 100, no. 6, pp. 1951–1970, 2012.
    [8-31] K. J. Lee, L. W. Wang, T. K. Chiang, Y. H. Wang, “Effects of Electrodes on the Switching Behavior of Strontium Titanate Nickelate Resistive Random Access Memory,” Materials, vol. 8, pp. 7191-7198, 2015.
    [8-32] L. Goux, P. Czarnecki, Y. Y. Chen, L. Pantisano, X. P. Wang, R. Degraeve, B. Govoreanu, M. Jurczak, D. J. Wouters, L. Altimime, “Evidences of oxygen-mediated resistive-switching mechanism in TinHfO2Pt cells,” Appl. Phys. Lett., vol. 97, p. 243509, 2010.
    [8-33] Y. H. Hwang, H. M. An, W. J. Cho., “Performance improvement of the resistive memory properties of InGaZnO thin films by using microwave irradiation,” Jpn. J. Appl. Phys., vol. 53, p. 04EJ04, 2014.
    [8-34] K.-J. Lee, Y. C. Chang, C. J. Lee, L. W. Wang, D. W. Chou, T. K. Chiang, Y. H. Wang, “Sol-gel strontium titanate nickelate thin films for flexible nonvolatile memory applications,” IEEE Trans. Electron Devices, vol. 64, pp. 2001-2007, 2017.
    [8-35] K. Jung, Y. Kim, Y. S. Park, W. Jung, J. Choi, B. Park, H. Kim, W. Kim, Hong, H. Im, “Unipolar resistive switching in insulating niobium oxide film and probing electroforming induced metallic components,” J. Appl. Phys., vol. 109, p. 054511, 2011.
    [8-36] K. Jung, Y. Kim, W. Jung, H. Im, B. Park, J. Hong, J. Lee, J. Park, K. Lee, “Electrically induced conducting nanochannels in an amorphous resistive switching niobium oxide film,” Appl. Phys. Lett., vol. 97, p. 233509, 2010.
    [8-37] Z. Q. Wang, H. Y. Xu, X. H. Li, X. T. Zhang, Y. X. Liu, Y. C. Liu, “Flexible resistive switching memory device based on amorphous InGaZnO film with excellent mechanical endurance,” IEEE Electron Device Lett., vol. 32, no. 10, pp. 1442-1444, 2011.
    [8-38] K. I. Chou, C. H. Cheng, Z. W. Zheng, Ming Liu, Albert Chin, “Ni/GeOx/TiOy/TaN RRAM on flexible substrate with excellent resistance distribution,” IEEE Electron Device Lett., vol. 34, no. 4, pp. 505-507, 2013.
    [8-39] C. C. Lin, H. Y. Wu, N. C. Lin, C. H. Lin, “Graphene-oxide-based resistive switching device for flexible nonvolatile memory application,” Jap. J. of Appl. Phys., vol. 53, p. 05FD03, 2014.
    [8-40] C. H. Cheng, F. S. Yeh, A. Chin, “Low-Power High-Performance Non-Volatile Memory on a Flexible Substrate with Excellent Endurance,” Adv. Mater., vol.23, pp. 902–905, 2010.

    下載圖示 校內:2023-12-31公開
    校外:2023-12-31公開
    QR CODE