| 研究生: |
劉家勤 Liew, Kah-Khan |
|---|---|
| 論文名稱: |
非均勻應力分佈在鋼板中之疲勞裂縫進展行為探討 Propagation Characteristics of Thickness-Through-Cracks in Irregular Stress Distribution Fields |
| 指導教授: |
林忠宏
Lin, Chung-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 造船及船舶機械工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 疲勞裂縫進展 、巴里定律 、非均勻應力分佈 、有限元素分析 、應力強度因子 、裂縫開口荷重 |
| 外文關鍵詞: | irregular stress distribution, closure loads, Stress Intensity Factor, Finite element Analsys, fatigue crack propagation, Paris’law |
| 相關次數: | 點閱:109 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
本文應用實驗及數值解析的方法來檢討,鋼板因為表面開槽而引發斷面上的應力分佈不均勻狀況下,其疲勞裂縫進展的行為。主要目的在於釐清此形狀鋼板的疲勞裂縫進展行為與母材間的差異,並對於含有凹槽或凸槽之鋼板提供一個預測疲勞裂縫進展速度的方法。
首先對於含有不同凹槽半徑及凸槽之鋼板進行疲勞實驗,求出在相同荷重作用下之疲勞壽命、a-N曲線與da/dN- K曲線,分析疲勞裂縫在不同凹槽或凸槽狀況下進展的實際情形。在實驗過程中,適當的導入beach mark,藉此觀察疲勞裂縫進展過程中,裂縫尖端在試片厚度方向所顯現的形狀。對於含不同凹槽半徑及凸槽之鋼板,其疲勞進展速度不同的原因,在將量測得到的開口荷重加入考慮後可以得到合理的解釋。
此外,本文利用有限元素計算套裝軟體ANSYS.Code5.5,根據實驗條件計算各組模型的應力分佈,並配合破壞力學進行裂縫尖端塑性區域的計算,作為預估模式的基本數據。最後,根據實驗數據及有限元素法模擬分析結果,利用斷面上的塑性區域分佈情形來解釋不同凹槽半徑及凸槽之鋼板其開口荷重不同的原因。
最後利用Wheeler遲滯模型之觀念,建立一個可預測裂縫進展壽命之模式,作為往後預測貫穿裂縫在此類型鋼板之進展速度的依據。
ABSTRACT
The propagating characteristics of thickness-through-cracks in irregular stress distribution fields are discussed in the present paper. Three kinds of specimen having different size of defects on the both surfaces or steel sheets are designed (hereafter referred or as “defective specimen”) to produce irregular stress distribution fields. Using defective specimens and common CCT specimens (referred to as “flat specimen”) fatigue crack propagating tests were carried out.
During the tests, crack growth fates and closure load were measured, and the beach marks used to record the shape of crack tip were introduced. For an analysis purpose, stress distribution and plastic zone of defective specimens are calculated be finite element analysis.
As the results, although all of the specimens are subjected to the same cyclic loading, defective specimens have higher closure loads and longer fatigue propagation life than that of flat specimens. Taking the closure loads into account and using effective stress intensity range, , to assess the propagation life, a precise prediction can be obtained. Also, the shape of beach marks obtained from defective specimens differs from that of flat specimen and is highly stress distribution dependent.
Finally, an approach to estimate the growth rate of thickness-through-cracks in irregular stress distribution fields is proposed.
參考文獻
[1] Peter , “Stress concentration factor” , Wiley , (1974)
[2] Wilson , “Mechanics of the Crack Tip Deformation and Extension by Fatigue” , ASTM STP 415,pp.247-311 (1967).
[3] David Broek , “Elementary Engineering Fracture Mechanics” 4th revised edition .
[4] G. R. Irwin, “Analysis of Stresses Near The End of a Crack Traversing a Plate”, Journal of Applied Mechanics , Trans. Of ASME , Vol.E24 , 1957 , pp.361-364
[5]李宗憲,“應力集中係數對疲勞裂縫進展影響之研究”,國立成大造船所碩士論文,中華民國九十年六月。
[6]Y. Murakami , “Stress Intensity Factor Handbook” , The Society of Material Science , Japan.
[7] J. C. Newman , Jr. and I. S. Raju , Analysis of Surface Crack in Finite Plates under Tension or Bending Loads , NASA , Technical Note , TP-1578 (1979).
[8]何杏華,“銲接構件應力集中對疲勞裂縫發生與進展之影響”,國立成大造船碩士論文,中華民國八十七年六月。
[9]張行著,何曼慶編“斷裂力學中應力強度因子的解法”,國防工業出版社。
[10] Paris , P.C. , Gomez , M. P. and Anderson . W. E. ,A rational analytic theory of fatigue . The Trend in Engineering . 13 (1961) pp. 9-14.
[11] P. C. Paris and F. Erdogan , “A Critical analysis of Crack Propagation Laws” , Trans. ASME. Res. D , pp.528 , 1963.
[12] Elber , “Fatigue Crack closure under cyclic tension” , ASTM STP486 , American Socity for Testing and Material , hiladelphia , pp.230-241.
[13] Elber , Wolf , “The Significance of Fatigue Crack Close” , ASTM STP 486 , pp230-242 , (1971).
[14] Dixon, J. R. , Stress and strain distribution around cracks in sheet material having various work hardening characteristics , Int. J. Fract. Mech. , l (1965) pp.224-243.
[15] C. H. Lin , S. H. Her , H. K. Lin , “Stress Concentration Effect on the Growth Rate of Embedded Fatigue Crack of Welded Joints” , TEAM’98 Kanazaewa , Japan , 6-9 , July , (1998).
[16]劉文哲,“動態亂型荷重下材料強度評估系統之研究”,國立成大造船碩士論文,(1995)。
[17] C. H. Lin , S. Machida , M. Matoba , H. Yoshinari , “Fatigue Crack Propagation Behavior under Random Amplitude Loading Condition” , Journal of the Society of Naval Architects of Japan , Vol.174 ,pp.523–533 , Nov.(1972).
[18]陳雄章譯,“機械元件設計”,第六版,滄海書局,83年6月。
[19]Wheeler , O. E., “Spectrum Load and Crack Growth”, J. Basic Engng. Trans. ASME ,94 pp.181-186 (1972).