| 研究生: |
鄭力瑋 Cheng, Li-Wei |
|---|---|
| 論文名稱: |
薄膜耦合銀奈米光柵反射型電漿子超穎介面之光學多重雙穩態模擬研究 Simulation study for generation of optical multiple bistability by using reflective plasmonic metasurfaces with film-coupled silver nanograting |
| 指導教授: |
藍永強
Lan, Yung-Chiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 197 |
| 中文關鍵詞: | 光學雙穩態 、侷域性表面電漿子共振 、光柵耦合 、超穎介面 |
| 外文關鍵詞: | Optical bistability, Localized surface plasmon resonance, Grating coupling, Metasurface |
| 相關次數: | 點閱:193 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要闡述透過薄膜耦合銀奈米光柵反射型電漿子超穎介面的設計來產生光學多重雙穩態(Optical multiple bistability),並以有限元素分析法(Finite Element Method,FEM)來對物理問題進行數值分析與模擬。而模擬內容主要針對不同的模型結構配合其他不同參數作多種模擬測試,其中包括單層MIM與雙層MIM週期性結構。
在本次研究中我們利用模擬軟體COMSOL Multiphysics來進行模擬與驗證,並設計出能夠產生光學多重雙穩態的模型結構,同時分析在不同條件或參數下光學雙穩態(OB)之特性變化。而模擬內容是在單元模型中由一個金屬奈米光柵延伸至多個,再將兩個類似的MIM結構垂直堆疊,來比較其差異,最後討論與分析其模擬結果。
另外,在本次研究中設計的結構並不複雜,透過此反射型電漿子超穎介面的設計,即能夠製成具有全光學開關(All-optical switching)功能與可調變性的光學器件,還可以應用在其他光學領域當中,且此模擬方法也能應用在其他光學雙穩態裝置(OBD)的設計上,由此可知,光學雙穩態(OB)具有很多的潛在發展與應用。
This thesis elaborates the generation of optical multiple bistability by using reflective plasmonic metasurfaces with film-coupled silver nanograting, and uses finite element method (FEM) to analyze and simulate physical problems. The simulation content is mainly based on different model structures with other different parameters for a variety of simulation tests, including single-layer MIM and double-layer MIM periodic structures.
In this study, we use the simulation software COMSOL Multiphysics for simulation and verification, and design a model structure capable of generating optical multiple bistability.
Simultaneously, we analyze the characteristics of optical bistability (OB) under different conditions or parameters. The simulation content is to extend from one metal nanograting to multiple in a unit model, and then stack two similar MIM structures vertically to compare the differences, and finally discuss and analyze the simulation results.
In addition, the structure designed in this study is not complicated. Therefore, using this structure design and simulation method, it can be used not only in all-optical switches and optical modulators, but also in other optical applications.
[1] Eugene Hecht (2002). Optics. Boston, United States:Addison Wesley. pp. 96-198.
[2] Chandrasekhar Roychoudhuri (2008). Fundamentals of Photonics. Bellingham, Washington, USA:SPIE Press. pp. 73-166.
[3] Frank L. Pedrotti, Leno M. Pedrotti, and Leno S. Pedrotti (2017). Introduction to Optics. Cambridge, England:Cambridge University Press. pp. 510-530.
[4] Richard S. Quimby (2006). Photonics and Lasers:An Introduction. Hoboken, New Jersey:John Wiley & Sons (Wiley-Interscience Publication). pp. 123-148.
[5] Chunfei Li (2017). Nonlinear Optics:Principles and Applications. Shanghai, China:Shanghai Jiao Tong University Press, Shanghai and Springer Nature Singapore Pte Ltd. pp. 1-4.
[6] B.E.A. Saleh, and M.C. Teich (1991). Fundamentals of Photonics. Boston, United States:Addison Wesley. pp. 737-795.
[7] 鄭王曜 (2003)。量子控制-人們的夢想:從了解微觀世界到控制微觀世界。物理雙月刊,25(4),532-538。
[8] Wood, R.W. (1902). On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philosophical Magazine Series 6, 4, 396-402.
[9] U. Fano (1941). The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves). Journal of the Optical Society of America, 31(3), 213-222.
[10] R. H. Ritchie (1957). Plasma Losses by Fast Electrons in Thin Films. Phys. Rev., 106(5), 874-881.
[11] Kretschmann, E., and Raether, H. (1968). Radiative Decay of Nonradiative Surface Plasmons Excited by Light. Zeitschrift für Naturforschung A, 23, 2135-2136.
[12] H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan (1979). OPTICAL BISTABILITY. Optics News, 5(3), 6-12.
[13] G. Bassani, Gerald Liedl, and Peter Wyder (2005). Encyclopedia of Condensed Matter Physics. United States:Elsevier. pp. 147-152.
[14] Hyatt Gibbs (1985). Optical Bistability:Controlling Light With Light. United States:Elsevier. pp. 1-304.
[15] Viktoriia Rutckaia, and Joerg Schilling (2020). Ultrafast low-energy all-optical switching. Nature Photonics, 14, 4-6.
[16] Masaaki Ono, Masanori Hata, Masato Tsunekawa, Kengo Nozaki, Hisashi Sumikura, Hisashi Chiba, and Masaya Notomi (2020). Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nature Photonics, 14, 37-43.
[17] F. Cuesta-Soto, A. Martínez, J. García, F. Ramos, P. Sanchis, J. Blasco, and J. Martí (2004). All-optical switching structure based on a photonic crystal directional coupler. Optics Express, 12(1), 161-167.
[18] V. Sasikala, and K. Chitra (2018). All optical switching and associated technologies:a review. Journal of Optics, 47, 307-317.
[19] P. W. Smith (1984). Applications of all-optical switching and logic. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 313(1525), 349-355.
[20] Kai Xu, Bao Yue Zhang, Yihong Hu, Muhammad Waqas Khan, Rui Ou, Qijie Ma, … and Jian Zhen Ou (2020). A high-performance visible-light-driven all-optical switch enabled by ultra-thin gallium sulfide. J. Mater. Chem. C, 9, 3115-3121.
[21] David A. B. Miller (2010). Are optical transistors the logical next step?. Nature Photonics, 4(1), 3-5.
[22] M. Matys, A. Domanowska, A. Michalewicz, B. Adamowicz, and T. Kachi (2020). All-optical transistor using deep-level defects in nitride semiconductors for room temperature optical computing. AIP Advances, 10, 105232.
[23] Cheng-Yu Wang, Chun-Wei Chen, Hung-Chang Jau, Cheng-Chang Li, Chiao-Yu Cheng, Chun-Ta Wang, … and Tsung-Hsien Lin (2016). All-optical transistor- and diode-action and logic gates based on anisotropic nonlinear responsive liquid crystal. Scientific Reports, 6, 30873.
[24] Mengying He, Shasha Liao, Li Liu, and Jianji Dong (2016). Theoretical analysis for optomechanical all-optical transistor. Front. Optoelectron., 9(3), 406-411.
[25] J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar (2009). A single-molecule optical transistor. Nature, 460, 76-80.
[26] Theoni Alexoudi, George Theodore Kanellos, and Nikos Pleros (2020). Optical RAM and integrated optical memories:a survey. Light:Science & Applications, 9, 91.
[27] Schulte, H., and Rack, A (1967). Optical delay line memory. IEEE J. Quantum Electron., 3, 246.
[28] Chao Liu, Zong-Quan Zhou, Tian-Xiang Zhu, Liang Zheng, Ming Jin, Xiao Liu, … and Guang-Can Guo (2020). Reliable coherent optical memory based on a laser-written waveguide. Optica, 7(2), 192-197.
[29] E Abraham, and S D Smith (1982). Optical bistability and related devices. Rep. Prog. Phys., 45, 815.
[30] Bernard Bendow, and Shashanka S. Mitra (2012). Fiber Optics. New York:Plenum Press. pp. 395-413.
[31] Konarski SG, Haberman MR, and Hamilton MF (2020). Acoustic response for nonlinear, coupled multiscale model containing subwavelength designed microstructure instabilities. Phys. Rev. E, 101, 022215.
[32] Mariam M Tohari (2020). Terahertz Optical Bistability in the Metal Nanoparticles-Graphene Nanodisks-Quantum Dots Hybrid Systems. Nanomaterials, 10(11), 2173.
[33] D. Weaire, and M. Al-Hourani (1990). Dynamics of optical bistability:a simple model. Journal of the Optical Society of America B, 7(6), 1066-1071.
[34] Guangsheng He, and Song H. Liu (1999). Physics of Nonlinear Optics. Singapore:World Scientific Publishing Co Pte Ltd. pp. 422-447.
[35] Jibing Liu, Xiao-Tao Xie, Chuan-Jia Shan, Tang-Kun Liu, Ray-Kuang Lee, and Ying Wu (2015). Optical bistability in nonlinear periodical structures with PT-symmetric potential. Laser Phys., 25, 015102.
[36] X. C. Jiang, Y. W. Zhou, D. L. Gao, Y. Huang, and L. Gao (2020). Realizing optical bistability and tristability in plasmonic coated nanoparticles with radial-anisotropy and Kerr-nonlinearity. Optics Express, 28(12), 17384-17394.
[37] Yi Xu, Baofei Wan, Ziwei Zhou, Yu Ma, Haifeng Zhang, and Dan Zhang (2020). Tunable and asymmetric optical bistability of one-dimensional photonic crystals based on InSb and nonlinear materials. Applied Optics, 59(31), 9799-9806.
[38] Jonathan Heinz, Ran Reiff, Tennesse Joyce, Andreas Becker, Agnieszka Jaroń-Becker, and Miroslav Kolesik (2020). Nonlinear polarization and ionization in O2:metastable electronic state model. Optics Express, 28(17), 25022-25036.
[39] Yang Huang, Ya Min Wu, and Lei Gao (2017). Bistable near field and bistable transmittance in 2D composite slab consisting of nonlocal core-Kerr shell inclusions. Optics Express, 25(2), 1062-1072.
[40] Lei Gao, Liping Gu, and Zhenya Li (2003). Optical bistability and tristability in nonlinear metal/dielectric composite media of nonspherical particles. Phys. Rev. E, 68, 066601.
[41] Hongli Chen, Youming Zhang, Baile Zhang, and Lei Gao (2016). Optical bistability in a nonlinear-shell-coated metallic nanoparticle. Scientific Reports, 6, 21741.
[42] Jun Guo, Leyong Jiang, Yue Jia, Xiaoyu Dai, Yuanjiang Xiang, and Dianyuan Fan (2017). Low threshold optical bistability in one-dimensional gratings based on graphene plasmonics. Optics Express, 25(6), 5972-5981.
[43] Yang Huang, Andrey E. Miroshnichenko, and Lei Gao (2016). Low-threshold optical bistability of graphene-wrapped dielectric composite. Scientific Reports, 6, 23354.
[44] Jianfa Zhang, Kevin F MacDonald, and Nikolay I Zheludev (2013). Nonlinear dielectric optomechanical metamaterials. Light:Science & Applications, 2, e96.
[45] W. J. Yu, H. Sun, and L. Gao (2016). Optical bistability in core-shell magnetoplasmonic nanoparticles with magnetocontrollability. Optics Express, 24(19), 22272-22281.
[46] Jian-Bo Li, Nam-Chol Kim, Mu-Tian Cheng, Li Zhou, Zhong-Hua Hao, and Qu-Quan Wang (2012). Optical bistability and nonlinearity of coherently coupled exciton-plasmon systems. Optics Express, 20(2), 1856-1861.
[47] K. Zhang, and L. Gao (2017). Optical bistability in graphene-wrapped dielectric nanowires. Optics Express, 25(12), 13747-13759.
[48] H. L. Chen, D. L. Gao, and L. Gao (2016). Effective nonlinear optical properties and optical bistability in composite media containing spherical particles with different sizes. Optics Express, 24(5), 5334-5345.
[49] Leyong Jiang, Jiao Tang, Jiao Xu, Zhiwei Zheng, Jun Dong, Jun Guo, … and Yuanjiang Xiang (2019). Graphene Tamm plasmon-induced low-threshold optical bistability at terahertz frequencies. Optical Materials Express, 9(1), 139-150.
[50] Gibbs, H. M., McCall, S. L., and Venkatesan, T. N. C. (1980). Optical Bistable Devices:The Basic Components Of All-Optical Systems?. Optical Engineering, 19(4), 463.
[51] A. P.H. Gonzalez-Marcos, A. Hurtado, and J. Antonio Martin-Pereda (2004). Optical bistable devices as sensing elements. SPIE Proceedings, 5611, 63-70.
[52] Quang Minh Ngo, Sangin Kim, Seok Ho Song, and Robert Magnusson (2009). Optical bistable devices based on guided-mode resonance in slab waveguide gratings. Optics Express, 17(26), 23459-23467.
[53] O.K. Kwon, K. Kim, S. Hyun, Y.W. Choi, E.H. Lee, X.B. Mei, and C.W. Tu (1996). A novel all-optical bistable device in a noninterferometric double p-i(ESQW’s)-n diode structure. IEEE Photonics Technology Letters, 8(2), 224-226.
[54] W. Sohler (1980). Optical bistable device as electro-optical multivibrator. Appl. Phys. Lett., 36, 351.
[55] Chunfei Li, Fei Zhou, and Kun Yang (2002). High accuracy optical bistable interferometric fiber sensors. Journal of Nonlinear Optical Physics & Materials, 11(2), 125-130.
[56] 李淳飛 (1996)。光學雙穩態研究20年。物理,25(5),267-272。
[57] Chunfei Li (2017). Nonlinear Optics:Principles and Applications. Shanghai, China:Shanghai Jiao Tong University Press, Shanghai and Springer Nature Singapore Pte Ltd. pp. 215-250.
[58] 李淳飛 (1982)。光學雙穩態裝置研究進展。物理,11(11),666-672。
[59] Herbert Walther, and Karl Werner Rothe (1979). Laser Spectroscopy IV. New York, USA:Springer Science + Business Media LLC. pp. 426-440.
[60] Claudia Yu. Zenkova (2007). About the possibility of using optical bistability effect in metrology systems. SPIE Proceedings, 6616, 66160Z.
[61] Ekpekpo, A (2011). Bistability, instability and chaos in nonlinear optical systems. Archives of Applied Science Research, 3(3), 12-19.
[62] Charles M. Bowden, Hyatt M. Gibbs, and Samuel L. McCall (1984). Optical Bistability 2. New York, USA:Springer Science + Business Media LLC. pp. 61-66.
[63] Charles M. Bowden, Hyatt M. Gibbs, and Samuel L. McCall (1984). Optical Bistability 2. New York, USA:Springer Science + Business Media LLC. pp. 111-118.
[64] M. Haelterman (1993). Ikeda instability and transverse effects in nonlinear ring resonators. Optics Communications, 100(1-4), 389-398.
[65] R E McCall, and V Ratts (1999). Soft-tissue realignment for adolescent patellar instability. Journal of Pediatric Orthopaedics, 19(4), 549-552.
[66] Masanari Shimada, Hideyuki Mizuno, and Atsushi Ikeda (2021). Novel elastic instability of amorphous solids in finite spatial dimensions. Soft Matter, 17(2), 346-364.
[67] M. Haelterman (1992). Simple model for the study of perioddoubling instabilities in the nonlinear ring cavity. Appl. Phys. Lett., 61, 2756.
[68] Yaron Silberberg, and Israel Bar-Joseph (1984). Optical instabilities in a nonlinear Kerr medium. Journal of the Optical Society of America B, 1(4), 662-670.
[69] K. Ikeda, and O. Akimoto (1982). Instability Leading to Periodic and Chaotic Self-Pulsations in a Bistable Optical Cavity. Phys. Rev. Lett., 48, 617.
[70] S. L. McCall (1978). Instability and regenerative pulsation phenomena in Fabry‐Perot nonlinear optic media devices. Appl. Phys. Lett., 32, 284.
[71] Eugene Hecht (2002). Optics. Boston, United States:Addison Wesley. pp. 667-676.
[72] Kitsakorn Locharoenrat (2021). Linear and Nonlinear Optics:Materials, Properties, and Applications. Singapore:Jenny Stanford Publishing. pp. 151-250.
[73] Guang S. He (2014). Nonlinear Optics and Photonics. Oxford, England:Oxford University Press. pp. 33-135.
[74] R. W. Minck, R. W. Terhune, and C. C. Wang (1966). Nonlinear Optics. Applied Optics, 5(10), 1595-1612.
[75] Bobo Gu, Chujun Zhao, Alexander Baev, Ken-Tye Yong, Shuangchun Wen, and Paras N. Prasad (2016). Molecular nonlinear optics:recent advances and applications. Advances in Optics and Photonics, 8(2), 328-369.
[76] Weili Shen, Jun Chen, Jinqiang Wu, Xiaoming Li, and Haibo Zeng (2020). Nonlinear optics in lead halide perovskites:mechanisms and applications. ACS Photonics, 8(1), 113-124.
[77] Michael Bass, Eric W. Van Stryland, Williams. David R., and William L. Wolfe (2001). Handbook of Optics:Fundamentals, Techniques, and Design, Volume IV. United States:McGraw Hill. pp. 17.3-17.38.
[78] Michael Bass, Casimer DeCusatis, Jay Enoch, Carolyn MacDonald, Vasudevan Lakshminarayanan, Guifang Li, Virendra Mahajan, and Eric Van Stryland (2009). Handbook of Optics, Volume IV:Optical Properties of Materials, Nonlinear Optics, Quantum Optics. United States:McGraw Hill Education. pp. 10.3-19.11.
[79] Guang S He, and Song H Liu (2018). Advanced Nonlinear Optics. Singapore:World Scientific Publishing Co Pte Ltd. pp. 27-624.
[80] Y. R. Shen (2002). The Principles of Nonlinear Optics. Hoboken, New Jersey:John Wiley & Sons (Wiley-Interscience Publication). pp. 13-504.
[81] Chunfei Li (2017). Nonlinear Optics:Principles and Applications. Shanghai, China:Shanghai Jiao Tong University Press, Shanghai and Springer Nature Singapore Pte Ltd. pp. 109-148.
[82] Grant R. Fowles (1989). Introduction to Modern Optics. United States:Dover Publications. pp. 225-305.
[83] Paul N. Butcher, and David Cotter (1991). The Elements of Nonlinear Optics. Cambridge, England:Cambridge University Press. pp. 56-274.
[84] Aleksei Zheltikov, Anne L’Huillier, and Ferenc Krausz (2007). Springer Handbook of Lasers and Optics. New York, USA:Springer Science + Business Media LLC. pp. 157-248.
[85] Robert W. Boyd (2020). Nonlinear Optics. United States:Elsevier. pp. 1-568.
[86] Junxi Zhang, Lide Zhang, and Wei Xu (2012). Surface plasmon polaritons:physics and applications. J. Phys. D:Appl. Phys., 45(11), 113001.
[87] Robert W. Boyd (2020). Nonlinear Optics. United States:Elsevier. pp. 569-582.
[88] Harry A. Atwater (2007). The Promise of PLASMONICS. Scientific American, 296(4), 56-63.
[89] Laszlo Frazer, Heyou Zhang, Chun Kiu Ng, Pegah Maasoumi, Jacek Jasieniak, Paul Mulvaney, and Alison Funston (2019). Near-field Scanning Optical Microscopy of Luminescent Nanostructured Semiconductors. OSA Advanced Photonics Congress (AP) (IPR, Networks, NOMA, SPPCom, PVLED), OSA Technical Digest, JT4A.9.
[90] Stephen Saddow (2011). Silicon Carbide Biotechnology. United States:Elsevier. pp. 351-376.
[91] Robert A. Meyers (2001). Encyclopedia of Physical Science and Technology. United States:Elsevier. pp. 469-484.
[92] Osvaldo Novais de Oliveira, Jr, Ferreira Marystela, Fábio Lima Lima Leite, and Alessandra Luzia Da Róz (2017). Nanocharacterization Techniques. Norwich:William Andrew. pp. 183-200.
[93] Leiva Casemiro Oliveira, Antonio Marcus Nogueira Lima, Carsten Thirstrup, and Helmut Franz Neff (2019). Surface Plasmon Resonance Sensors:A Materials Guide to Design, Characterization, Optimization, and Usage. New York, USA:Springer Science + Business Media LLC. pp. 1-320.
[94] Jiří Homola (2006). Surface Plasmon Resonance Based Sensors. New York, USA:Springer Science + Business Media LLC. pp. 1-248.
[95] Nico J de Mol (2012). Surface plasmon resonance for proteomics. Methods Mol Biol., 800, 33-53.
[96] Yi-Tao Long, and Chao Jing (2014). Localized Surface Plasmon Resonance Based Nanobiosensors. New York, USA:Springer Science + Business Media LLC. pp. 1-119.
[97] Judith Langer, Dorleta Jimenez de Aberasturi, Javier Aizpurua, Ramon A. Alvarez-Puebla, Baptiste Auguié, Jeremy J. Baumberg, … and Guillermo C. Bazan (2020). Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 14(1), 28-117.
[98] Ana Isabel Pérez-Jiménez, Danya Lyu, Zhixuan Lu, Guokun Liu, and Bin Ren (2020). Surface-enhanced Raman spectroscopy:benefits, trade-offs and future developments. Chem. Sci., 11(18), 4563-4577.
[99] Katrin Kneipp, Martin Moskovits, and Harald Kneipp (2006). Surface-Enhanced Raman Scattering. New York, USA:Springer Science + Business Media LLC. pp. 1-460.
[100] Vasyl Shvalya, Gregor Filipič, Janez Zavašnik, Ibrahim Abdulhalim, and Uroš Cvelbar (2020). Surface-enhanced Raman spectroscopy for chemical and biological sensing using nanoplasmonics:The relevance of interparticle spacing and surface morphology. Applied Physics Reviews, 7, 031307.
[101] Nayoung Kim, Michael R. Thomas, Mads S. Bergholt, Isaac J. Pence, Hyejeong Seong, Patrick Charchar, … and Nevena Todorova (2020). Surface enhanced Raman scattering artificial nose for high dimensionality fingerprinting. Nature Communications, 11, 207.
[102] Nan Chen, Ting-Hui Xiao, Zhenyi Luo, Yasutaka Kitahama, Kotaro Hiramatsu, Naoki Kishimoto, … and Tamitake Itoh (2020). Porous carbon nanowire array for surface-enhanced Raman spectroscopy. Nature Communications, 11, 4772.
[103] Fei Ding, Yuanqing Yang, Sergey I. Bozhevolnyi, and Rucha A. Deshpande (2017). A review of gap-surface plasmon metasurfaces:fundamentals and applications. Nanophotonics, 7(6), 1129-1156.
[104] Joseph W. Haus (2016). Fundamentals and Applications of Nanophotonics. Cambridge, England:Woodhead Publishing. pp. 1-395.
[105] Amin Kianinejad (2018). Metamaterial Surface Plasmon-Based Transmission Lines and Antennas. New York, USA:Springer Science + Business Media LLC. pp. 1-75.
[106] Xin Ren, En Cao, Weihua Lin, Yuzhi Song, Wejie Liangc, and Jingang Wang (2017). Recent advances in surface plasmon-driven catalytic reactions. RSC Adv., 7, 31189-31203.
[107] Alessandro Tredicucci, Claire Gmachl, Federico Capasso, Albert L. Hutchinson, Deborah L. Sivco, and Alfred Y. Cho (2000). Single-mode surface-plasmon laser. Appl. Phys. Lett., 76, 2164.
[108] Shereena Joseph, Swagato Sarkar, and Joby Joseph (2020). Grating-Coupled Surface Plasmon-Polariton Sensing at a Flat Metal-Analyte Interface in a Hybrid-Configuration. ACS Appl. Mater. Interfaces, 12(41), 46519-46529.
[109] V. V. Popov, O. V. Polishchuk, and W. Knap (2009). Plasmon-plasmon scattering and giant broadening of the gated plasmon resonance line in a nanometric heterotransistor with a 2D electron channel. Bulletin of the Russian Academy of Sciences:Physics, 73, 84-87.
[110] V.A.G. Rivera, O.B. Silva, Y. Ledemi, Y. Messaddeq, and E. Marega Jr. (2015). Collective Plasmon-Modes in Gain Media. New York, USA:Springer Science + Business Media LLC. pp. 1-120.
[111] Jietao Liu, Binzong Xu, Jing Zhang, and Guofeng Song (2013). Double Plasmon-Induced Transparency in Hybrid Waveguide-Plasmon System and Its Application for Localized Plasmon Resonance Sensing with High Figure of Merit. Plasmonics, 8, 995-1001.
[112] Aída Serrano Rubio (2015). Modified Au-Based Nanomaterials Studied by Surface Plasmon Resonance Spectroscopy. New York, USA:Springer Science + Business Media LLC. pp. 1-179.
[113] 藍永強、鍾岳宏、徐兆鋐、張德安、柳克強 (2006)。電漿科學與平面顯示器。物理雙月刊,28(2),452-465。
[114] 吳民耀、劉威志 (2006)。表面電漿子理論與模擬。物理雙月刊,28(2),486-496。
[115] 藍永強、邱行偉 (2006)。電漿模擬。物理雙月刊,28(2),497-504。
[116] Asef Kheirandish, Nasser Sepehri Javan, and Hosein Mohammadzadeh (2020). Modified Drude model for small gold nanoparticles surface plasmon resonance based on the role of classical confinement. Scientific Reports, 10, 6517.
[117] H. Y. Li, S. M. Zhou, J. Li, Y. L. Chen, S. Y. Wang, Z. C. Shen, L. Y. Chen, H. Liu, and X. X. Zhang (2001). Analysis of the Drude model in metallic films. Applied Optics, 40(34), 6307-6311.
[118] Mark L. Brongersma, and Pieter G. Kik (2007). Surface Plasmon Nanophotonics. New York, USA:Springer Science + Business Media LLC. pp. 1-265.
[119] Lin Li (2017). Manipulation of Near Field Propagation and Far Field Radiation of Surface Plasmon Polariton. New York, USA:Springer Science + Business Media LLC. pp. 1-113.
[120] D Saeedkia (2013). Handbook of Terahertz Technology for Imaging, Sensing and Communications. Cambridge, England:Woodhead Publishing. pp. 3-214.
[121] 邱國斌、蔡定平 (2006)。金屬表面電漿簡介。物理雙月刊,28(2),472-485。
[122] David Andrews, Thomas Nann, and Robert Lipson (2019). Comprehensive Nanoscience and Nanotechnology. United States:Elsevier. pp. volume 4, 1-360.
[123] Stefan A. Maier (2007). Plasmonics:Fundamentals and Applications. New York, USA:Springer Science + Business Media LLC. pp. 3-38.
[124] Zeev Zalevsky, and Ibrahim Abdulhalim (2014). Integrated Nanophotonic Devices. Norwich:William Andrew. pp. 179-311.
[125] 藍永強、許瑞成 (2012)。柱狀金屬-介電質波導陣列之表面電漿子布拉赫振盪。真空科技,25(1),47-53。
[126] 藍永強 (2009)。以共振腔調制之表面電漿子引發金屬薄膜共振穿隧效應。光學工程,107,42-50。
[127] 張家瑜、賴英煌 (2019)。表面電漿現象及其應用。科學發展,555,66-71。
[128] Yijun Tang, Xiangqun Zeng, and Jennifer Liang (2010). Surface Plasmon Resonance:An Introduction to a Surface Spectroscopy Technique. J Chem Educ., 87(7), 742-746.
[129] Jiří Homola (2008). Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev., 108(2), 462-493.
[130] Sergiy Patskovsky, Andrei V. Kabashin, Michel Meunier, and John H. T. Luong (2003). Silicon-based surface plasmon resonance sensing with two surface plasmon polariton modes. Applied Optics, 42(34), 6905-6909.
[131] John A. Polo, Jr., Tom G. Mackay, and Akhlesh Lakhtakia (2013). Electromagnetic Surface Waves. United States:Elsevier. pp. 1-258.
[132] Qidong Zhao (2020). Advanced Nanomaterials for Pollutant Sensing and Environmental Catalysis. United States:Elsevier. pp. 39-78.
[133] Ashutosh Tiwari (2018). Graphene Bioelectronics. United States:Elsevier. pp. 37-84.
[134] Caitlin Fisher, Lindsay C. Botten, Christopher G. Poulton, Ross C. McPhedran, and C. Martijn de Sterke (2015). Efficient end-fire coupling of surface plasmons in a metal waveguide. Journal of the Optical Society of America B, 32(3), 412-425.
[135] Stefan A. Maier (2007). Plasmonics:Fundamentals and Applications. New York, USA:Springer Science + Business Media LLC. pp. 39-64.
[136] S. Martellucci, and A. N. Chester (1983). Integrated Optics:Physics and Applications. New York, USA:Springer Science + Business Media LLC. pp. 323-333.
[137] Roger J. Narayan (2017). Medical Biosensors for Point of Care (POC) Applications. Cambridge, England:Woodhead Publishing. pp. 99-131.
[138] Richard F. Wallis, George I. Stegeman, and Theodor Tamir (1986). Electromagnetic Surface Excitations. New York, USA:Springer Science + Business Media LLC. pp. 1-179.
[139] Akash Deep, and Sandeep Kumar (2019). Advances in Nanosensors for Biological and Environmental Analysis. United States:Elsevier. pp. 95-118.
[140] Morgan Hywel, Chandra Sekhar Rout, and Dattatray J. Late (2019). Fundamentals and Sensing Applications of 2D Materials. Cambridge, England:Woodhead Publishing. pp. 407-436.
[141] Fumika Nagasawa (2017). Studies on the Plasmon-Induced Photoexcitation Processes of Molecules on Metal Surfaces. New York, USA:Springer Science + Business Media LLC. pp. 1-73.
[142] Stefan A. Maier (2007). Plasmonics:Fundamentals and Applications. New York, USA:Springer Science + Business Media LLC. pp. 65-106.
[143] Bharat Bhushan (2016). Encyclopedia of Nanotechnology. New York, USA:Springer Science + Business Media LLC. pp. 1950-1999.
[144] Satoshi Kawata (2001). Near-Field Optics and Surface Plasmon Polaritons. New York, USA:Springer Science + Business Media LLC. pp. 1-206.
[145] Philip A. Thomas (2018). Narrow Plasmon Resonances in Hybrid Systems. New York, USA:Springer Science + Business Media LLC. pp. 1-114.
[146] Nico J. Mol, and Marcel J. E. Fischer (2010). Surface Plasmon Resonance:Methods and Protocols. United States:Humana Press. pp. 1-281.
[147] Hua Dong, Zhaoxin Wu, Yucui Gao, Ahmed El-Shafei, Bo Jiao, Yang Dai, and Xun Hou (2014). A nanostructure-based counter electrode for dye-sensitized solar cells by assembly of silver nanoparticles. Organic Electronics, 15(7), 1641-1649.
[148] Steven Larsen, and Yiping Zhao (2019). Improving the performance of LSPR sensors by composite plasmonic nanostructures. Optical Sensors and Sensing Congress (ES, FTS, HISE, Sensors), OSA Technical Digest, SW5D.3.
[149] Satyabrata Mohapatra, Tuan Anh Nguyen, and Phuong Nguyen-Tri (2019). Noble Metal-Metal Oxide Hybrid Nanoparticles. Cambridge, England:Woodhead Publishing. pp. 3-547.
[150] Sabu Thomas, Yves Grohens, Guillaume Vignaud, Nandakumar Kalarikkal, and Jemy James (2020). Nano-Optics. United States:Elsevier. pp. 1-112.
[151] Yijun Feng, Xiaohua Teng, Junming Zhao, Yan Chen, and Tian Jiang (2006). Anomalous reflection and refraction in anisotropic metamaterial realized by periodically loaded transmission line network. Journal of Applied Physics, 100, 114901.
[152] Xi Wang, Jun Ding, Bowen Zheng, Sensong An, Guohua Zhai, and Hualiang Zhang (2018). Simultaneous Realization of Anomalous Reflection and Transmission at Two Frequencies using Bi-functional Metasurfaces. Scientific Reports, 8, 1876.
[153] Zhe Zhao, Jian Wang, Shuhui Li, and Alan E. Willner (2013). Metamaterials-based broadband generation of orbital angular momentum carrying vector beams. Optics Letters, 38(6), 932-934.
[154] Qinghua Guo, Christian Schlickriede, Dongyang Wang, Hongchao Liu, Yuanjiang Xiang, Thomas Zentgraf, and Shuang Zhang (2017). Manipulation of vector beam polarization with geometric metasurfaces. Optics Express, 25(13), 14300-14307.
[155] Jacob Engelberg, and Uriel Levy (2020). The advantages of metalenses over diffractive lenses. Nature Communications, 11, 1991.
[156] Tapashree Roy, Edward T. F. Rogers, and Nikolay I. Zheludev (2013). Sub-wavelength focusing meta-lens. Optics Express, 21(6), 7577-7582.
[157] Mu Ku Chen, Yongfeng Wu, Lei Feng, Qingbin Fan, Minghui Lu, Ting Xu, and Din Ping Tsai (2021). Principles, Functions, and Applications of Optical Meta-Lens. Advanced Optical Materials, 9(4), 2001414.
[158] Ruey-Bing (Raybeam) Hwang (2020). Binary meta-hologram for a reconfigurable holographic metamaterial antenna. Scientific Reports, 10, 8586.
[159] Nanxi Li, Yuan Hsing Fu, Yuan Dong, Ting Hu, Zhengji Xu, Qize Zhong, … and Dongdong Li (2020). Metasurface Beam Deflector Array on a 12-inch Glass Wafer. Optical Fiber Communication Conference (OFC), OSA Technical Digest, W2A.9.
[160] Veselago, V. G. (1968). The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ. Soviet Physics Uspekhi, 10, 509-514.
[161] J. B. Pendry (2000). Negative Refraction Makes a Perfect Lens. Phys. Rev. Lett., 85, 3966.
[162] R A Shelby, D R Smith, and S Schultz (2001). Experimental verification of a negative index of refraction. Science, 292(5514), 77-79.
[163] 邱國斌、蔡定平 (2003)。左手材料奈米平板的表面電漿量子簡介。光學工程,83,8-20。
[164] Stavros Pissadakis, and Stefano Selleri (2015). Optofluidics, Sensors and Actuators in Microstructured Optical Fibers. Cambridge, England:Woodhead Publishing. pp. 29-54.
[165] Shiyi Wang, and Qiwen Zhan (2016). Reflection type metasurface designed for high efficiency vectorial field generation. Scientific Reports, 6, 29626.
[166] Bob D. Guenther, and Duncan G. Steel (2018). Encyclopedia of Modern Optics. United States:Elsevier. pp. volume 2, 252-264.
[167] Angela Piegari, and François Flory (2018). Optical Thin Films and Coatings. Cambridge, England:Woodhead Publishing. pp. 143-421.
[168] S. Haxha, F. AbdelMalek, F. Ouerghi, M. D. B. Charlton, A. Aggoun, and X. Fang (2018). Metamaterial Superlenses Operating at Visible Wavelength for Imaging Applications. Scientific Reports, 8, 16119.
[169] Dylan Lu, and Zhaowei Liu (2012). Hyperlenses and metalenses for far-field super-resolution imaging. Nature Communications, 3, 1205.
[170] Nikolaos L. Tsitsas, and Constantinos A. Valagiannopoulos (2017). Anomalous reflection of visible light by all-dielectric gradient metasurfaces. Journal of the Optical Society of America B, 34(7), D1-D8.
[171] Davide Ramaccia, Alessandro Toscano, and Filiberto Bilotti (2020). Light propagation through metamaterial temporal slabs:reflection, refraction, and special cases. Optics Letters, 45(20), 5836-5839.
[172] Zifu Xu, Longqiu Li, Xiaocong Chang, Yu Zhao, and Wuyi Wang (2021). Thermal field manipulation via a two-phase thermal metamaterial. Applied Materials Today, 22, 100911.
[173] Jinwei Zeng, Xi Wang, Jingbo Sun, Apra Pandey, Alexander N. Cartwright, and Natalia M. Litchinitser (2013). Manipulating Complex Light with Metamaterials. Scientific Reports, 3, 2826.
[174] Pekka Alitalo, and Sergei Tretyakov (2009). Electromagnetic cloaking with metamaterials. Materials Today, 12(3), 22-29.
[175] 林浩存、蔡定平 (2014)。超穎介面介紹與其應用。物理雙月刊,36(4),264-271。
[176] Tatjana Gric, and Ortwin Hess (2019). Phenomena of Optical Metamaterials. United States:Elsevier. pp. 1-261.
[177] Fei Tao, Ang Liu, Tianliang Hu, and A.Y.C. Nee (2020). Digital Twin Driven Smart Design. United States:Elsevier. pp. 109-138.
[178] Katsunari Okamoto (2006). Fundamentals of Optical Waveguides. United States:Elsevier. pp. 261-328.
[179] Bastian E. Rapp (2017). Microfluidics:Modeling, Mechanics and Mathematics. United States:Elsevier. pp. 497-743.
[180] Alessio Pipinato (2015). Innovative Bridge Design Handbook. United Kingdom:Butterworth-Heinemann. pp. 91-126.
[181] Franklin Y. Cheng, and Yuanxian Gu (1999). Computational Mechanics in Structural Engineering. United States:Elsevier. pp. 31-388.
[182] Mi Wang (2015). Industrial Tomography:Systems and Applications. Cambridge, England:Woodhead Publishing. pp. 61-107.
[183] S.R.H. Hoole (1995). Finite Elements, Electromagnetics and Design. United States:Elsevier. pp. 1-612.
[184] W. Fred Ramirez (2015). Computational Methods in Process Simulation. United Kingdom:Butterworth-Heinemann. pp. 353-430.
[185] Karan Kumar Pradhan, and Snehashish Chakraverty (2019). Computational Structural Mechanics:Static and Dynamic Behaviors. United States:Elsevier. pp. 25-28.
[186] Yuri Vassilevsky, Maxim Olshanskii, Sergey Simakov, Andrey Kolobov, and Alexander Danilov (2020). Personalized Computational Hemodynamics. United States:Elsevier. pp. 79-108.
[187] Rauno Gordon, Tuukka Arola, Katrina Wendel-Mitoraj, Jari AK Hyttinen, and Outi Ryynanen (2006). Accuracy of numerical methods by calculating static and quasistatic electric fields. Proc. Estonian Acad. Sci. Eng., 12, 262-283.
[188] 杜平安、甘娥忠、于亞婷 (2004)。有限元法:原理、建模及應用。中國北京:國防工業出版社。1-226。
[189] G.R. Liu, and Nguyen Thoi Trung (2010). Smoothed Finite Element Methods. United States:CRC Press. pp. 1-647.
[190] 王剛、安琳 (2012)。COMSOL Multiphysics工程實踐與理論仿真:多物理場數值分析技術。中國北京:電子工業出版社。1-197。
[191] Basudeb Sain, Cedrik Meier, and Thomas Zentgraf (2019). Nonlinear optics in all-dielectric nanoantennas and metasurfaces:a review. Advanced Photonics, 1(2), 024002.
[192] Natalia M. Litchinitser (2018). Nonlinear optics in metamaterials. Advances in Physics:X, 3(1), 702-719.
[193] Zhiqiang Ge, Xuwei Hei, Leiran Wang, Qibing Sun, Jinhai Si, Wei Zhao, Guoxi Wang, and Wenfu Zhang (2018). Low-threshold optical bistability in field-enhanced nonlinear guided-mode resonance grating nanostructure. Optics Letters, 43(17), 4156-4159.
[194] Ruei-Cheng Shiu, Yung-Chiang Lan, and Guang-Yu Guo (2014). Optical multiple bistability in metal-insulator-metal plasmonic waveguides side-coupled with twin racetrack resonators. Journal of the Optical Society of America B, 31(11), 2581-2586.
[195] N C Panoiu, W E I Sha, D Y Lei, and G-C Li (2018). Nonlinear optics in plasmonic nanostructures. Journal of Optics, 20(8), 083001.
[196] Tingyin Ning, Huawei Liang, Yanyan Huo, and Lina Zhao (2020). Optical bistability in gap-plasmon metasurfaces in consideration of classical nonlocal effects. Optics Express, 28(14), 20532-20542.
[197] Antoine Moreau, Cristian Ciracì, Jack J. Mock, Ryan T. Hill, Qiang Wang, Benjamin J. Wiley, Ashutosh Chilkoti, and David R. Smith (2012). Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature, 492, 86-89.
[198] Christos Argyropoulos, Cristian Ciracì, and David R. Smith (2014). Enhanced optical bistability with film-coupled plasmonic nanocubes. Appl. Phys. Lett., 104, 063108.
[199] Zhiqin Huang, Alexandre Baron, Stéphane Larouche, Christos Argyropoulos, and David R. Smith (2015). Optical bistability with film-coupled metasurfaces. Optics Letters, 40(23), 5638-5641.
[200] P. B. Johnson, and R. W. Christy (1972). Optical Constants of the Noble Metals. Phys. Rev. B, 6, 4370.