簡易檢索 / 詳目顯示

研究生: 黃彥凱
Huang, Yen-Kai
論文名稱: 導電性與應變計設計對柔性穿戴式傳感器之量測精確度與穩定度關係研究
A study on the relationship between conductivity and strain gauge design on the measurement precision and stability of flexible wearable sensors
指導教授: 施士塵
Shi, Shih-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 89
中文關鍵詞: 穿戴式傳感器導電式水凝膠導電率應變計設計量測穩定度
外文關鍵詞: wearable sensor, conductive hydrogel, strain gauge design, stability of measurement, human body monitoring
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I Extended Abstract III 誌謝 XII 總目錄 XIII 表目錄 XVI 圖目錄 XVII 第1章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 增加水凝膠導電性 2 1-2-2 針對不同運動設計應變計 4 1-2-3 量測精密度與穩定性 6 1-3 Hypothesis 10 1-3-1 DMSO增強PEDOT:PSS導電性 10 1-3-2 應變計的選擇 10 1-3-3 導電性增強提升精密度與穩定度 11 1-4 本文規劃與架構 11 第2章 應用理論 13 2-1 DMSO增強水凝膠導電性能 13 2-2 應變計設計與肌肉伸縮方向關係 14 2-3 電阻與應變計系統關係 15 第3章 實驗方法與設備 18 3-1 實驗流程 18 3-2 實驗材料及儀器 18 3-2-1 DMSO增強水凝膠導電性實驗材料 18 3-2-2 改良應變計設計之實驗材料 19 3-2-3 實驗儀器 20 3-3 實驗步驟 21 3-3-1 DMSO增強水凝膠導電性製程 21 3-3-2 改良傳感器之應變計設計實驗流程 21 3-3-3 人體即時監控系統 22 3-4 實驗分析 23 3-4-1 FTIR 性質分析 23 3-4-2 導電度量測 24 3-4-3 拉伸試驗 24 3-4-4 GF值量測 24 3-4-5 動態機械分析 24 3-4-6 人體即時監控試驗 26 3-4-7 量測精密度與穩定性 29 3-4-8 健身訓練應用-臥推與肩推 30 第4章 結果與討論 32 4-1 以DMSO增強水凝膠之導電性 32 4-2 動態機械分析結果 34 4-3 改良應變計設計量測結果 36 4-4 導電增強式傳感器之穩定度量測 40 4-5 肩部健身訓練應用 45 4-6 應變計應用規範 47 第5章 總結 49 5-1 結論 49 5-2 未來方向展望 50 參考文獻 52 附件一 人體即時監控之Arduino程式碼 60 附件二 APP inventor手機程式設計 65

    1. Shahzad, H.; Jabeen, H.; Arslan, H.R.M.; Ghouri, M.H.; Gondal, S.A.; Umar, M.; Arif, M.; Bibi, S. Musculoskeletal Injuries Among Weight Lifters With or Without Supervision ? The International Journal of Frontier Sciences 2024, 5, doi:10.37978/tijfs.v5i2.368.
    2. Corzo, D.; Tostado-Blázquez, G.; Baran, D. Flexible Electronics: Status, Challenges and Opportunities. Frontiers in Electronics 2020, 1, doi:10.3389/felec.2020.594003.
    3. Banitaba, S.N.; Khademolqorani, S.; Jadhav, V.V.; Chamanehpour, E.; Mishra, Y.K.; Mostafavi, E.; Kaushik, A. Recent progress of bio-based smart wearable sensors for healthcare applications. Materials Today Electronics 2023, 5, doi:10.1016/j.mtelec.2023.100055.
    4. Liu, Y.; Wang, L.; Mi, Y.; Zhao, S.; Qi, S.; Sun, M.; Peng, B.; Xu, Q.; Niu, Y.; Zhou, Y. Transparent stretchable hydrogel sensors: materials, design and applications. Journal of Materials Chemistry C 2022, 10, 13351-13371, doi:10.1039/d2tc01104b.
    5. Ding, H.; Liu, J.; Shen, X.; Li, H. Advances in the Preparation of Tough Conductive Hydrogels for Flexible Sensors. Polymers (Basel) 2023, 15, doi:10.3390/polym15194001.
    6. Li, G.; Li, C.; Li, G.; Yu, D.; Song, Z.; Wang, H.; Liu, X.; Liu, H.; Liu, W. Development of Conductive Hydrogels for Fabricating Flexible Strain Sensors. Small 2022, 18, e2101518, doi:10.1002/smll.202101518.
    7. Zhou, C.; Wu, T.; Xie, X.; Song, G.; Ma, X.; Mu, Q.; Huang, Z.; Liu, X.; Sun, C.; Xu, W. Advances and challenges in conductive hydrogels: From properties to applications. European Polymer Journal 2022, 177, doi:10.1016/j.eurpolymj.2022.111454.
    8. Kang, L.-L.; Xue, M.; Liu, Y.-Y.; Yu, Y.-H.; Liu, Y.-R.; Li, G. Proton conductive metal–organic frameworks based on main-group metals. Coordination Chemistry Reviews 2022, 452, doi:10.1016/j.ccr.2021.214301.
    9. Wu, Y.; Sun, S.; Geng, A.; Wang, L.; Song, C.; Xu, L.; Jia, C.; Shi, J.; Gan, L. Using TEMPO-oxidized-nanocellulose stabilized carbon nanotubes to make pigskin hydrogel conductive as flexible sensor and supercapacitor electrode: Inspired from a Chinese cuisine. Composites Science and Technology 2020, 196, doi:10.1016/j.compscitech.2020.108226.
    10. Li, T.; Liang, B.; Ye, Z.; Zhang, L.; Xu, S.; Tu, T.; Zhang, Y.; Cai, Y.; Zhang, B.; Fang, L.; et al. An integrated and conductive hydrogel-paper patch for simultaneous sensing of Chemical-Electrophysiological signals. Biosens Bioelectron 2022, 198, 113855, doi:10.1016/j.bios.2021.113855.
    11. Salim, O.; Mahmoud, K.A.; Pant, K.K.; Joshi, R.K. Introduction to MXenes: synthesis and characteristics. Materials Today Chemistry 2019, 14, doi:10.1016/j.mtchem.2019.08.010.
    12. Xiao, S.; He, X.; Zhao, Z.; Huang, G.; Yan, Z.; He, Z.; Zhao, Z.; Chen, F.; Yang, J. Strong anti-polyelectrolyte zwitterionic hydrogels with superior self-recovery, tunable surface friction, conductivity, and antifreezing properties. European Polymer Journal 2021, 148, doi:10.1016/j.eurpolymj.2021.110350.
    13. Yuk, H.; Varela, C.E.; Nabzdyk, C.S.; Mao, X.; Padera, R.F.; Roche, E.T.; Zhao, X. Dry double-sided tape for adhesion of wet tissues and devices. Nature 2019, 575, 169-174, doi:10.1038/s41586-019-1710-5.
    14. Shi, H.; Liu, C.; Jiang, Q.; Xu, J. Effective Approaches to Improve the Electrical Conductivity of PEDOT:PSS: A Review. Advanced Electronic Materials 2015, 1, doi:10.1002/aelm.201500017.
    15. Shahrim, N.A.A.; Ahmad, Z.; Wong Azman, A.; Fachmi Buys, Y.; Sarifuddin, N. Mechanisms for doped PEDOT:PSS electrical conductivity improvement. Materials Advances 2021, 2, 7118-7138, doi:10.1039/d1ma00290b.
    16. Yu, Z.; Xia, Y.; Du, D.; Ouyang, J. PEDOT:PSS Films with Metallic Conductivity through a Treatment with Common Organic Solutions of Organic Salts and Their Application as a Transparent Electrode of Polymer Solar Cells. ACS Appl Mater Interfaces 2016, 8, 11629-11638, doi:10.1021/acsami.6b00317.
    17. Ouyang, Z.; Xu, D.; Yu, H.-Y.; Li, S.; Song, Y.; Tam, K.C. Novel ultrasonic-coating technology to design robust, highly sensitive and wearable textile sensors with conductive nanocelluloses. Chemical Engineering Journal 2022, 428, doi:10.1016/j.cej.2021.131289.
    18. Han, L.; Lu, X.; Wang, M.; Gan, D.; Deng, W.; Wang, K.; Fang, L.; Liu, K.; Chan, C.W.; Tang, Y.; et al. A Mussel-Inspired Conductive, Self-Adhesive, and Self-Healable Tough Hydrogel as Cell Stimulators and Implantable Bioelectronics. Small 2017, 13, doi:10.1002/smll.201601916.
    19. Measurements Group, I. Errors Due to Transverse Sensitivity. Experimental Techniques 1983, 7, 30-35, doi:10.1111/j.1747-1567.1983.tb01667.x.
    20. Qu, J.; Zhao, X.; Liang, Y.; Xu, Y.; Ma, P.X.; Guo, B. Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing. Chemical Engineering Journal 2019, 362, 548-560, doi:10.1016/j.cej.2019.01.028.
    21. Wang, H.; Li, Z.; Zuo, M.; Zeng, X.; Tang, X.; Sun, Y.; Lin, L. Stretchable, freezing-tolerant conductive hydrogel for wearable electronics reinforced by cellulose nanocrystals toward multiple hydrogen bonding. Carbohydr Polym 2022, 280, 119018, doi:10.1016/j.carbpol.2021.119018.
    22. Mi, Y.; Tong, W.; Lu, Y.; Cao, X.; Wang, N. Robust conductive hydrogel advances self-powered intelligent sports monitoring and fair judging. Chemical Engineering Journal 2024, 500, doi:10.1016/j.cej.2024.156883.
    23. Al-Dahiree, O.S.; Tokhi, M.O.; Hadi, N.H.; Hmoad, N.R.; Ghazilla, R.A.R.; Yap, H.J.; Albaadani, E.A. Design and Shape Optimization of Strain Gauge Load Cell for Axial Force Measurement for Test Benches. Sensors (Basel) 2022, 22, doi:10.3390/s22197508.
    24. Ajovalasit, A. Advances in Strain Gauge Measurement on Composite Materials. Strain 2011, 47, 313-325, doi:10.1111/j.1475-1305.2009.00691.x.
    25. Yang, Y.; Wang, H.; Hou, Y.; Nan, S.; Di, Y.; Dai, Y.; Li, F.; Zhang, J. MWCNTs/PDMS composite enabled printed flexible omnidirectional strain sensors for wearable electronics. Composites Science and Technology 2022, 226, doi:10.1016/j.compscitech.2022.109518.
    26. Wang, G.; Liu, Y.; Xu, F.; Liu, G.; Qiu, J. Design and optimization of isotropic stretchable strain sensors for multidirectional monitoring. Smart Materials and Structures 2021, 31, doi:10.1088/1361-665X/ac319e.
    27. Araromi, O.A., Castellanos, S., Walsh, C. J., & Wood, R. J. Compliant_Low_Profile_Multi-Axis_Force_Sensors. IEEE 2018, 187-192, doi:10.1109/ICRA.2018.8460189.
    28. Kim, D.-H.; Ghaffari, R.; Lu, N.; Rogers, J.A. Flexible and Stretchable Electronics for Biointegrated Devices. Annual Review of Biomedical Engineering 2012, 14, 113-128, doi:10.1146/annurev-bioeng-071811-150018.
    29. Someya, T.; Bao, Z.; Malliaras, G.G. The rise of plastic bioelectronics. Nature 2016, 540, 379-385, doi:10.1038/nature21004.
    30. Hoopes, B.J., and Konstantinos P. Triantis. The Application of Control Chart in the Measurement System Analysis. IEEE Transactions on Engineering Management 2001, 48, 239-253, doi:10.4324/9780203848944-9.
    31. Lall, P.; Goyal, K.; Narangaparambil, J. Accuracy, Hysteresis and Extended Time Stability of Additively Printed Temperature and Humidity Sensors. In Proceedings of the 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), 2020; pp. 1070-1080.
    32. Kuo, T.-I.; Chuang, T.-L. Process Capability Control Charts for Monitoring Process Accuracy and Precision. Axioms 2023, 12, doi:10.3390/axioms12090857.
    33. Huynh-Ba, K. Handbook of Stability Testing in Pharmaceutical Development; 2009.
    34. Chen, C.; Zhu, Y.; Bao, H.; Shen, J.; Jiang, H.; Peng, L.; Yang, X.; Li, C.; Chen, G. Ethanol-assisted multi-sensitive poly(vinyl alcohol) photonic crystal sensor. Chem Commun (Camb) 2011, 47, 5530-5532, doi:10.1039/c1cc10957j.
    35. Farzinfar, E.; Paydayesh, A. Investigation of polyvinyl alcohol nanocomposite hydrogels containing chitosan nanoparticles as wound dressing. International Journal of Polymeric Materials and Polymeric Biomaterials 2018, 68, 628-638, doi:10.1080/00914037.2018.1482463.
    36. Xiang, X.; Chen, G.; Chen, K.; Jiang, X.; Hou, L. Facile preparation and characterization of super tough chitosan/poly(vinyl alcohol) hydrogel with low temperature resistance and anti-swelling property. Int J Biol Macromol 2020, 142, 574-582, doi:10.1016/j.ijbiomac.2019.09.132.
    37. Li, Y.; Chengxin, H.; Lan, J.; Yan, B.; Zhang, Y.; Shi, L.; Ran, R. Hydrogel-based temperature sensor with water retention, frost resistance and remoldability. Polymer 2020, 186, doi:10.1016/j.polymer.2019.122027.
    38. Pu-You, J., Cai-ying, B., Li-hong, H., & Yong-hong, Z. Properties of Poly(vinyl alcohol) Plasticized by Glycerin. J. For. Prod. Ind 2014, 3, 151-153, doi:10.1002/app.41985.
    39. Huang, M.; Hou, Y.; Li, Y.; Wang, D.; Zhang, L. High performances of dual network PVA hydrogel modified by PVP using borax as the structure-forming accelerator. Des Monomers Polym 2017, 20, 505-513, doi:10.1080/15685551.2017.1382433.
    40. Sareethammanuwat, M.; Boonyuen, S.; Arpornmaeklong, P. Effects of beta-tricalcium phosphate nanoparticles on the properties of a thermosensitive chitosan/collagen hydrogel and controlled release of quercetin. J Biomed Mater Res A 2021, 109, 1147-1159, doi:10.1002/jbm.a.37107.
    41. Kalantari, K.; Mostafavi, E.; Saleh, B.; Soltantabar, P.; Webster, T.J. Chitosan/PVA hydrogels incorporated with green synthesized cerium oxide nanoparticles for wound healing applications. European Polymer Journal 2020, 134, doi:10.1016/j.eurpolymj.2020.109853.
    42. Wang, X.; Zheng, S.; Xiong, J.; Liu, Z.; Li, Q.; Li, W.; Yan, F. Stretch‐Induced Conductivity Enhancement in Highly Conductive and Tough Hydrogels. Advanced Materials 2024, 36, doi:10.1002/adma.202313845.
    43. Zhou, Y.; Fei, X.; Tian, J.; Xu, L.; Li, Y. A ionic liquid enhanced conductive hydrogel for strain sensing applications. J Colloid Interface Sci 2022, 606, 192-203, doi:10.1016/j.jcis.2021.07.158.
    44. Turner, C.S. Johnson-Nyquist Noise. Wireless Systems Engineering, Inc. 2012.
    45. Fan, X.; Stott, N.E.; Zeng, J.; Li, Y.; Ouyang, J.; Chu, L.; Song, W. PEDOT:PSS materials for optoelectronics, thermoelectrics, and flexible and stretchable electronics. Journal of Materials Chemistry A 2023, 11, 18561-18591, doi:10.1039/d3ta03213b.
    46. Kim, Y.H.; Sachse, C.; Machala, M.L.; May, C.; Müller‐Meskamp, L.; Leo, K. Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post‐Treatment for ITO‐Free Organic Solar Cells. Advanced Functional Materials 2011, 21, 1076-1081, doi:10.1002/adfm.201002290.
    47. Cruz-Cruz, I.; Reyes-Reyes, M.; Aguilar-Frutis, M.A.; Rodriguez, A.G.; López-Sandoval, R. Study of the effect of DMSO concentration on the thickness of the PSS insulating barrier in PEDOT:PSS thin films. Synthetic Metals 2010, 160, 1501-1506, doi:10.1016/j.synthmet.2010.05.010.
    48. Zhao, Y.; Liu, Y.; Li, Y.; Hao, Q. Development and Application of Resistance Strain Force Sensors. Sensors (Basel) 2020, 20, doi:10.3390/s20205826.
    49. Higson, G. Recent advances in strain gauges. Journal of Scientific Instruments 1964, 41, 405, doi:10.1088/0950-7671/41/7/301.
    50. Hong, S.; Rachim, V.P.; Baek, J.-H.; Park, S.-M. Real-time multiaxial strain mapping using computer vision integrated optical sensors. npj Flexible Electronics 2023, 7, doi:10.1038/s41528-023-00264-1.
    51. Zullo, G.; Silvestroni, A.L.; Candiotto, G.; Koptyug, A.; Petrone, N. A Novel Multi-Axial Pressure Sensor Probe for Measuring Triaxial Stress States Inside Soft Materials. Sensors (Basel) 2021, 21, doi:10.3390/s21103487.
    52. J F Qu, S.P.B., H Rogalla, W L Tew, D R White and K L Zhou. Noise Thermometery review Qu 2019 PrePrint. Measurement Science and Technology 2019 30, 112001, doi:10.1088/1361-6501/ab3526.
    53. Kay, A., & Rivera, G. Impact of Current Noise in CMOS and JFET Amplifiers. Texas Instruments application note 2023.
    54. Holloway, J.L.; Spiller, K.L.; Lowman, A.M.; Palmese, G.R. Analysis of the in vitro swelling behavior of poly(vinyl alcohol) hydrogels in osmotic pressure solution for soft tissue replacement. Acta Biomater 2011, 7, 2477-2482, doi:10.1016/j.actbio.2011.02.016.
    55. Liu, Y.; Geever, L.M.; Kennedy, J.E.; Higginbotham, C.L.; Cahill, P.A.; McGuinness, G.B. Thermal behavior and mechanical properties of physically crosslinked PVA/Gelatin hydrogels. J Mech Behav Biomed Mater 2010, 3, 203-209, doi:10.1016/j.jmbbm.2009.07.001.
    56. Liu, L.; Cooke, P.H.; Coffin, D.R.; Fishman, M.L.; Hicks, K.B. Pectin and polyacrylamide composite hydrogels: Effect of pectin on structural and dynamic mechanical properties. Journal of Applied Polymer Science 2004, 92, 1893-1901, doi:10.1002/app.20174.
    57. Wang, T.; Chen, H.; Liang, W.J.; Ng, B.S.L.; Lu, R.; Qi, J.; Wang, H.; Zhang, J.; Xie, H.; Xiao, R.; et al. Layered Composites for High Tan Delta Plateau over Wide Temperature Range. Polymers (Basel) 2024, 16, doi:10.3390/polym16243587.
    58. Whitcomb, K. Measurement of Glass Transition Temperatures by
    Dynamic Mechanical Analysis and Rheology. TA Instruments 2022, 1–5.
    59. Kim, J.-W.; Choi, J.-Y.; Ha, E.-J.; Choi, J.-H. Human Pose Estimation Using MediaPipe Pose and Optimization Method Based on a Humanoid Model. Applied Sciences 2023, 13, doi:10.3390/app13042700.
    60. Kong, J.-H.; Jang, N.-S.; Kim, S.-H.; Kim, J.-M. Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors. Carbon 2014, 77, 199-207, doi:10.1016/j.carbon.2014.05.022.
    61. Noteboom, L.; Belli, I.; Hoozemans, M.J.M.; Seth, A.; Veeger, H.E.J.; Van Der Helm, F.C.T. Effects of bench press technique variations on musculoskeletal shoulder loads and potential injury risk. Front Physiol 2024, 15, 1393235, doi:10.3389/fphys.2024.1393235.
    62. Clinic, R. 比五十肩更常見的肩痛是它 ➔夾擠症候群. Available online: https://retreat-clinic.com/2019/10/05/%E6%AF%94%E4%BA%94%E5%8D%81%E8%82%A9%E6%9B%B4%E5%B8%B8%E8%A6%8B%E7%9A%84%E8%82%A9%E7%97%9B%E6%98%AF%E4%BB%96%E2%9E%9C-%E5%A4%BE%E6%93%A0%E7%97%87%E5%80%99%E7%BE%A4/ (accessed on 5 月 26 日).
    63. Blazkiewicz, M.; Hadamus, A. The Effect of the Weight and Type of Equipment on Shoulder and Back Muscle Activity in Surface Electromyography during the Overhead Press-Preliminary Report. Sensors (Basel) 2022, 22, doi:10.3390/s22249762.
    64. Ma, S.; Yuan, Q.; Zhang, X.; Yang, S.; Xu, J. Solvent effect on hydrogen-bonded thin film of poly(vinylpyrrolidone) and poly(acrylic acid) prepared by layer-by-layer assembly. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2015, 471, 11-18, doi:10.1016/j.colsurfa.2015.01.057.
    65. Awadhia, A.; Agrawal, S.L. Structural, thermal and electrical characterizations of PVA:DMSO:NH4SCN gel electrolytes. Solid State Ionics 2007, 178, 951-958, doi:10.1016/j.ssi.2007.04.001.
    66. Kim, J.S.; Kim, B.K.; Jang, M.; Kang, K.; Kim, D.E.; Ju, B.-K.; Kim, J. Wearable hand module and real-time tracking algorithms for measuring finger joint angles of different hand sizes with high accuracy using FBG strain sensor. Sensors 2020, 20, 1921.
    67. Yang, X.; Ma, X.; Niu, Y.; Yao, Y.; Khan, S.A.; Zhang, H.; Cui, X. Thermoelectric hydrogels for self-powered wearable biosensing. Nano Trends 2024, 7, doi:10.1016/j.nwnano.2024.100050.
    68. Muddasar, M.; Menéndez, N.; Quero, Á.; Nasiri, M.A.; Cantarero, A.; García-Cañadas, J.; Gómez, C.M.; Collins, M.N.; Culebras, M. Highly-efficient sustainable ionic thermoelectric materials using lignin-derived hydrogels. Advanced Composites and Hybrid Materials 2024, 7, doi:10.1007/s42114-024-00863-0.
    69. Kim, D.; Park, Y.; Ju, D.; Lee, G.; Kwon, W.; Cho, K. Energy-Filtered Acceleration of Charge-Carrier Transport in Organic Thermoelectric Nanocomposites. Chemistry of Materials 2021, 33, 4853-4862, doi:10.1021/acs.chemmater.0c04677.
    70. Mushtaq, F.; Raza, Z.A.; Batool, S.R.; Zahid, M.; Onder, O.C.; Rafique, A.; Nazeer, M.A. Preparation, properties, and applications of gelatin-based hydrogels (GHs) in the environmental, technological, and biomedical sectors. Int J Biol Macromol 2022, 218, 601-633, doi:10.1016/j.ijbiomac.2022.07.168.
    71. Tomic, S.L.; Babic Radic, M.M.; Vukovic, J.S.; Filipovic, V.V.; Nikodinovic-Runic, J.; Vukomanovic, M. Alginate-Based Hydrogels and Scaffolds for Biomedical Applications. Mar Drugs 2023, 21, doi:10.3390/md21030177.
    72. Zhang, W.; Liu, Y.; Xuan, Y.; Zhang, S. Synthesis and Applications of Carboxymethyl Cellulose Hydrogels. Gels 2022, 8, doi:10.3390/gels8090529.

    無法下載圖示 校內:2030-08-22公開
    校外:2030-08-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE