簡易檢索 / 詳目顯示

研究生: 朱聖凱
Chu, Sheng-Kai
論文名稱: 水熱電化學法陽極沈積錳氧化物之電極製備及其特性之研究
Preparation and characteristics of manganese oxides electrode by hydrothermal electrochemical anodic deposition
指導教授: 黃啟祥
Huang, Chi-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 104
中文關鍵詞: 擬電容超級電容器超高電容器電化學電容器陽極沈積水熱法
外文關鍵詞: hydrothermal method, supercapacitors, pseudo-capacitance, ultracapacitors, electrochemical capacitor, anodic deposition
相關次數: 點閱:120下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   目前的錳氧化物薄膜電極不論以溶膠-凝膠法或陽極沈積法所製備的電極材料皆為非結晶構造,使用在電解液下反應時,由於結構鬆散,往往易有錳氧化物薄膜溶損之行為發生,需另外藉由熱處理程序才能改善其電化學穩定性,但其比電容值易因熱處理溫度的增加而減小。基於此觀點考量下,若能將錳氧化物電極材料製成比表面積大且為結晶性的錳氧化物薄膜,則將之作為電極材料時,應可提升其比電容值及其電化學特性。
      本研究目的旨在以水熱法陽極沈積錳氧化物於鈦片電極基材上,並將之作為超高電容器之電極,檢討水熱處理條件對錳氧化物電極的電化學特性及其表面積對電容量之影響。在電化學特性分析方面,主要是以循環伏安法於0.1M Na2SO4溶液中進行擬電容行為測試及比電容量之評估。
      實驗結果顯示錳氧化物薄膜電極在100℃水熱溫度下,陽極沈積0.5分鐘,具有最佳的比電容量。在水熱環境下進行之陽極沈積之錳氧化物薄膜,經循環伏安測試其電化學特性,可看出其循環伏安曲線是隨著掃瞄圈數的增加,而逐漸變大,顯示在水熱環境下成長作為電極表面的錳氧化物薄膜其表面活性物質在電解液中未能瞬間完全參與反應所致。

      No matter the electrode material of manganese oxides thin films made by sol-gel or anodic deposition are not crystallization, and manganese oxides thin films are easy to be dissolved under the reaction of electrolyte. It is helpful to stabilize the electroanalysis by the process of heat treatment, but the specific capacitance will decrease by the increase of temperature. According to the above, if electrode of manganese oxides could made to be crystallinity and larger than the measure of surface, it will strengthen the property of specific capacitance and electroanalysis.
      My research is to anodic deposition manganese oxides on electrode titanium by hydrothermal method, and be used as the electrode of supercapacitor to discuss the effect of electric capacity by the electrode of manganese oxides property of electroanalysis and the measure of surface under anodic deposition. At the electroanalysis property analysis, it uses the cyclic voltammetry to test the pseudocapacitor behavior on 0.1 M Na2SO4 and specific capacitance.
      The experiment proves that the electrode of manganese oxides thin films has better specific capacitance under 100℃ and 0.5 minutes by hydrothermal method will getting larger in scanned circles. It reveals that the surface active species of manganese oxides thin films as electrode surface grow by hydrothermal method can not react completely soon on the electrolyte.

    中文摘要 …………………………………………………………I 英文摘要 …………………………………………………………II 目錄 …………………………………………………………IV 表目錄 …………………………………………………………VIII 圖目錄 …………………………………………………………IX 第一章 緒論 …………………………………………………………1 1-1 前言 …………………………………………………………1 1-2 研究動機與目的 …………………………………………………………3 1-3 電解液材料 …………………………………………………………4 第二章 理論基礎與前人研究 …………………………………………………………7 2-1 電化學電容器發展史 …………………………………………………………7 2-2 電容器簡介 …………………………………………………………9 2-3 電容器特性 …………………………………………………………10 2-3-1 電容量 …………………………………………………………10 2-3-2 能量儲存 …………………………………………………………11 2-3-3 電容器的頻率特性 …………………………………………………………12 2-3-4 介電質對電容的影響 …………………………………………………………13 2-3-5 使用電壓 …………………………………………………………15 2-3-6 介電理論 …………………………………………………………15 2-4 電化學電容器 …………………………………………………………17 2-4-1 電化學電容器之特性 …………………………………………………………17 2-4-2 電化學電容器之分類 …………………………………………………………19 2-5 電化學電容器電極材料 …………………………………………………………21 2-5-1 金屬氧化物電極 …………………………………………………………25 2-5-2 金屬氧化物電極種類及用途 …………………………………………………………25 2-5-3金屬氧化物電極製備方法 …………………………………………………………27 2-6 水熱合成法 …………………………………………………………31 2-6-1 水熱法概述 …………………………………………………………31 2-6-2 水熱合成法之原理 …………………………………………………………32 2-6-3 水熱法的類型 …………………………………………………………35 2-6-4 高壓反應釜反應容積與溫度之關係 …………………………………………………………36 2-6-5 水熱法製備粉體的優點 …………………………………………………………39 2-6-6 水熱製程的改進 …………………………………………………………40 第三章 實驗方法與步驟 …………………………………………………………42 3-1 電極材料製備 …………………………………………………………42 3-1-1 鈦箔電極片前處理 …………………………………………………………42 3-1-2 水熱電化學實驗 …………………………………………………………43 3-2 藥品與裝置 …………………………………………………………46 3-3 錳氧化物薄膜電極製作流程 …………………………………………………………48 3-4 性質分析及實驗設備 …………………………………………………………49 3-4-1 X射線繞射儀 …………………………………………………………49 3-4-2 掃瞄式電子顯微鏡 …………………………………………………………50 3-4-3 化學分析電子儀 …………………………………………………………50 3-4-4 膜厚量測 …………………………………………………………51 3-4-5 薄膜電極之命名 …………………………………………………………52 第四章 結果與討論 …………………………………………………………53 4-1 循環伏安之結果 …………………………………………………………53 4-1-1 錳氧化物之比電容量 …………………………………………………………53 4-1-2 錳氧化物披覆電極之循環伏安行為比較 …………………………………………………………55 4-1-3 錳氧化物之可逆性 …………………………………………………………55 4-1-4 錳氧化物之穩定性 …………………………………………………………56 4-1-5 掃瞄速率對含水錳氧化物的影響 …………………………………………………………57 4-2 電極表面微結構分析 …………………………………………………………57 4-2-1 結晶相分析 …………………………………………………………57 4-2-2 掃瞄式電子顯微鏡(SEM)薄膜分析 …………………………………………………………58 4-2-3 循環伏安測試對錳氧化物表面型態的影響 …………………………………………………………59 4-2-4 X-ray光電子光譜(XPS)分析 …………………………………………………………60 4-3 熱處理對錳氧化物電容特性之影響 …………………………………………………………61 4-3-1 熱處理後對錳氧化物循環伏安行為之影響 …………………………………………………………61 4-3-2 熱處理後對錳氧化物可逆性性之影響 …………………………………………………………62 4-4 陽極沈積錳氧化物薄膜 …………………………………………………………63 4-5 綜合討論 …………………………………………………………63 第五章 結論 …………………………………………………………98 參考文獻 …………………………………………………………100

    1. J. P. Zheng, P. J. Cygan, and T. R. Jow, ”Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors”, J. Electrochem. Soc., 142, 2699-2703 (1995)

    2. Chi-Chang Hu, Ta-Wang Tsou, “Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition”, Electrochim. Acta,47, 3523-3532 (2002)

    3. L. Mao, T. Sotomura, K. Nakatsu, N. Koshiba, D. Zhang, T. Ohsaka, “Electrochemical Characterization of Catalytic Activities of Manganese Oxides to Oxygen Reduction in Alkaline Aqueous Solution”, J. Electrochem. Soc., 149, A504-A507 (2002)

    4. Y. U. Jeong, A. Manthiram, “Nanocrystalline Manganese Oxides for Electrochemical Capacitors with Neutral Electrolytes”, J. Electrochem. Soc., 149, A1419-A1422 (2002)

    5. Chi-Chang Hu, Ta-Wang Tsou, “Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition”, Electrochem. Comm., 4, 105-109 (2002)

    6. 江鴻儒, “循環伏安法及電鍍法製備釕電極在電化學電容器之應用”, 國立中正大學化工研究所碩士論文 (2001)

    7. Sun-Cem Pang, Marc A. Anderson, Thomas W. Chapman, “Novel Electrode Materials for Tin-Film Ultracapacitors:Comparison of Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide”, J. Electrochem. Soc., 147, 444-450 (2000)

    8. H. Y. Lee, J. B. Goodenough, V. Manivannan, “Electrochemical capacitors with KCl electrolyte”, Comptes Rendus Acad. Sci. Paris, t. 2, Serie II c, 5650-577 (1999)

    9. 鄒達旺, “陽極沈積含水錳氧化物於電化學電容器之研究”, 國立中正大學化工研究所碩士論文 (2002)

    10. 高志勇,陳耿陽,吳富其,江萬爵,賴志坤, ”超高電容器製程技術簡介”, 工業材料166期, 114 (2000)

    11. 黃孟娟,張榮錡, ”釕氧化物超高電容器材料特性簡介”, 工業材料182期, 122 (2002)

    12. 黃瑞雄,顏溪成, ”漫談電化學”, 科學發展 359期, 22 (2002)

    13. R. K tz, M. Carlen, “Principles and applications of electrochemical capacitors”, Electrochimica Acta., 45, 2483-2484 (2000)

    14. A. Nishino, ”Capacitors: operating principles,current market and technical trends”, J. Power Sources, 60, 137 (1996).

    15. 薛立人, ”高性能電容器”, 工業材料 166期, 121 (2000)

    16. 曾文男, ”導電高分子於高儲能電容器上之應用”, 工業材料 176期, 145-148 (2001)

    17. H. Neugebauer, A. Cravino, S. Luzzati, M. Catellani, A. Petr, L. Dunsch, N.S. Sariciftci, “Spectral signatures of positive and negative charged states in doped and photoexcited low band-gap polydithienothiophenes”, Synthetic Metals, 748, 139 (2003)

    18. H. Neugebauer, “Infrared signatures of positive and negative charge carriers in conjugated polymers with low band gaps”, J. Electroanalytical Chemistry, 154, 563 (2004)

    19. M. Wolszczak, J.Kroh and M. M. Abdel-Hamid, ”Some aspects of the radiation processing of conducting polymers,” Radiat. Phys. Chem. Vol. 45, No. 1, 72 (1995)

    20. C. Arbizzani, M. Mastragostino, and B. Scrosati in Handbook of Organic Conductive Molecules and Polymers, Vol. 4, H. S. Nalwa, Editor, 595, John Wiley & Sons, Chichester, U. K. (1997)

    21. A. M. Couper, D. Pletcher, F.C. Walsh, Chem. Rev., 90, 837 (1990)

    22. H. Wendt, “Electrocatalysis in Organic Electrochemistry”, Electrochim. Acta., 29, 1513 (1991)

    23. S. Trasatti, “Physical Electrochemistry of Ceramic Oxide”, Electrochim. Acta., 36, 225 (1991)

    24. B. Marsan, N. Fradette, G. Beaudoin, J. Electrochem. Soc. 139, 1889 (1992)

    25. F.I. Mattos-Costa, P. de Lima-Neto, S.A.S. Machado, L.A. Avaca, “Characterisation of surfaces modified by sol-gel derived RuxIr1-xO2 coatings for oxygen evolution in acid medium”, Electrochimica. Acta., 44, 1515-1523 (1998)

    26. J. G. D. Haenen, W. Visscher, E. Barendrecht, “Oxygen Evolution on NiCo2O4 Electrodes”, J. Electrochem. Soc., 15, 29-38 (1985)

    27. J. Livage, M. Henry, “Ultrastructure Processing of Advanced Ceramics”, (J. D. Mackenzie and D. R. Ulrich, eds.), Wiley, New York, 183 (1988)

    28. 張光輝, “循環伏安法置備釕銥氧化物於電化學電容器的應用”, 國立中正大學化工研究所碩士論文 (2000)

    29. J. P. Zheng, and T. R. Jow, J. Electrochem. Soc., 142, L6-L8 (1995)

    30. G. Lodi, E. Sivieri, A. DeBattisti and S. Trasatti, J. Electrochem. Soc., 8, 135-143 (1978)

    31. G. W. Morey, “Hydrothermal Synthesis”, J. Am. Ceram. Soc., 36, 279 (1953)

    32. R. A. Laudise, “Crystal Growth of Electronic Materials”, ed. by E. Kaldes, Elsevier Science, 159 (1985)

    33. L. M. Demetsyanets and A. N. Lopachev, Some Problems of Consaltants Bureau, London Press, 1 (1973)

    34. W. J. Dawson, “Hydrothermal Synthesis of Advanced Ceramic Powders”, Ceram. Bull., 67 (10), No. 10, 1673 (1988)

    35. S. Wada, T. Suzuki and T. Noma, J. Ceram. Soc. Jpn., 103 (12), 1220 (1995)

    36. A. Chittofratt and E.Matijevic, Colloids and Surf., 48, 65 (1990)

    37. 李鳳生, “水熱法”, 超細粉體技術, 136 (2001)

    38. 張立德,牟季美, “水熱法(高溫水解法)”, 奈米材料和奈米結構, 111-112 (2002)

    39. 史宗淮, “水熱法合成鋇鐵氧磁粉之研究”, 國立清華大學化工研究所博士論文 (1986)

    40. J. Trindade, D. Pedrosa de Jesus and P. Obrien, J. Mater. Chem., 4, 10, 1611 (1994)

    41. C. H. Lu. and W. J. Hwang, Mater. Lett., 27, 229 (1996)

    42. S. T. Chung, K. Nagata and H. Igarashi, Ferroelectrics, 94, 43 (1989)

    43. 呂宗昕,王憲程, “水熱法製備超微細電子陶瓷粉體及其電子元件之應用”.

    44. H. P. Klug and L. E. Alexander, X-ray Diddraction Procedures (Wiley, New York, 1974) Chap. 9.

    45. S. Ardizzone, C.L. Bianchi, D. Tirelli, “Mn3O4 and γ-powders, preparation, phase composition and XPS characterization”, Physicochemical and Engineering Aspects., 134, 305-312 (1998)

    46. Brian R. Strohmeier, David M. Hercules, “Surface Spectroscopic Characterization of Mn/Al2O3 Catalysts”, J. Phys. Chem., 88, 4922-4929 (1984)

    47. Masaya Chigane, Masami Ishikawa, “Manganese Oxide Thin Film Preparation by Potentiostatic Electrolyses and Electrochromism”, J. Electrochem. Soc., 147 (6), 2246-2251 (2000)

    48. Masaya Chigane, Masami Ishikawa, Masanobu Izaki, “Preparation of Manganese Oxide Thin Films by Electrolysis/Chemical Deposition and Electrochromism”, J. Electrochem. Soc., 148 (7), D96-D101 (2001)

    49. Junhua Jiang, Anthony Kucernak, “Electrochemical supercapacitor material based on manganese oxide:preparation and characterization”, Electrochimica. Acta., 47, 2381-2386 (2002)

    50. Chi-Chang Hu, Chen-Ching Wang, “Nanostructures and Capacitive Characteristics of Hydrous Manganese Oxide Prepared by Electrochemical Deposition”, J. Electrochem. Soc., 150 (8), A1079-A1084 (2003)

    下載圖示 校內:2005-08-12公開
    校外:2006-08-12公開
    QR CODE