簡易檢索 / 詳目顯示

研究生: 高駿青
Annas, Fauzy
論文名稱: 氣體燃料燃燒中添加過氧化氫的分析
Analysis of Hydrogen Peroxide Addition to the Gaseous Fuel Combustion
指導教授: 林大惠
Lin, Ta-Hui
陳冠邦
Chen, Guan-Bang
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 108
中文關鍵詞: 甲烷一氧化碳氫氣過氧化氫預混燃燒絕熱火焰溫度層流火焰 速度熱釋放速率
外文關鍵詞: Methane, Carbon monoxide, Hydrogen, Hydrogen Peroxide, Premixed combustion, Adiabatic flame temperature, Laminar flame speed, Heat release rate
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氣體燃料燃燒是氣體燃料與氧化劑之間的放熱化學反應、不同的氣體燃料具有各自的燃燒特性和操作條件。氧化劑強化策略(富氧或添加強氧化劑(過氧化氫))可以提高氣體燃料的燃燒性能。本研究旨在以富氧作為對比、了解添加過氧化氫對甲烷、一氧化碳和氫氣預混燃燒的影響。對一個自由傳播的一維火焰模型進行了數值研究、以研究添加過氧化氫對每種預混氣體燃料燃燒的影響。進行了預混甲烷火焰的錐形火焰實驗,以了解過氧化氫溶液對預混甲烷燃燒的影響。在標準條件下(298K 和大氣壓力)、透過添加少量含氫物質(甲烷、水蒸氣和氫氣)、對一氧化碳-空氣預混火焰的引發進行了額外的研究。所有數值和實驗工作均在423K(過氧化氫的沸點)和一個大氣壓力下進行。

    在數值觀測中、將過氧化氫添加到預混甲烷、一氧化碳和氫氣火焰中、結果表明、添加過氧化氫方案的層流火焰速度優於添加富氧方案。隨著氧化劑中氧氣百分比的增加、絕熱火焰溫度分佈從添加過氧化氫>富氧方案變成添加富氧方案>添加過氧化氫方案。我們將這兩種方案的交點定義為交點溫度。化學效應對層流火焰速度有顯著的貢獻、尤其是在添加較多過氧化氫的情況下。在一氧化碳-空氣燃燒的引發過程中、添加不同的含氫物種具有難以區分的絕熱火焰溫度、而添加甲烷的層流火焰速度分佈分別高於添加氫氣和水蒸氣的情況。此外、層流火焰速度與放熱速率呈正相關、添加甲烷可顯著提高放熱速率。

    實驗觀察發現、當過氧化氫濃度為60%時、層流火焰速度保持不變、而當過氧化氫濃度高於70%時、層流火焰速度增加。實驗和數值模擬一致地證明了最大層流火焰速度的混合當量比與不同過氧化氫添加量和濃度之間存在相關性。與數值模擬相比、實驗計算出的火焰速度被低估、可能是由於過氧化氫的早期分解所致。建議使用濃度高於70%的過氧化氫溶液、以提高預混甲烷/空氣火焰的整體層流火焰速度。

    Gases fuel combustion is an exothermic chemical reaction between the gaseous fuel and oxidizers,  where different gaseous fuel has their own combustion characteristics and operating conditions. An oxidizer enhancement strategy (oxygen-enrichment or adding a strong oxidant (hydrogen peroxide)) can increase the gaseous fuel combustion performance. This study aimed to understand the effects of hydrogen peroxide addition to the premixed combustion of methane, carbon monoxide, and hydrogen using oxygen enrichment as a comparison. A freely propagating one-dimensional flame model is numerically investigated to study the effects of hydrogen peroxide addition to each premixed gaseous fuel combustion. A conical flame experiment for a premixed methane flame was performed to understand the effects of hydrogen peroxide solution on the premixed methane combustion. An additional investigation on the initiation of carbon monoxide-air premixed flame was performed using a small addition of hydrogenous species (methane, water vapor, and hydrogen) at standard conditions (298K and atmospheric pressure). All the numerical and experimental works have been done at 423K (the boiling point of hydrogen peroxide) and atmospheric pressure.

    In the numerical observation, adding the hydrogen peroxide to the premixed methane, carbon monoxide, and hydrogen flame showed that the laminar flame speed of the hydrogen peroxide addition scenario dominates over the oxygen-enrichment scenario. The adiabatic flame temperature distribution changed upon hydrogen peroxide addition > oxygen-enrichment scenario to the oxygen-enrichment scenario > hydrogen peroxide addition with increasing oxygen percentage in oxidizers. We define the intersection between these two scenarios as the intersection temperature. The chemical effect has a noticeable contribution to the laminar flame speed, especially in higher hydrogen peroxide additions. In the case of the initiation of carbon monoxide-air combustion, adding different hydrogenous species has an indistinguishable adiabatic flame temperature, while adding methane has a higher laminar flame speed distribution compared with hydrogen and water steam addition, respectively. Furthermore, the laminar flame speed positively correlates with the heat release rate, and adding methane results in a noticeable increase in the heat release rate.

    In the experimental observation, the laminar flame speed remains unchanged at a hydrogen peroxide concentration of 60%, while it increases at a hydrogen peroxide concentration higher than 70%. The experiment and numerical simulation consistently correlated the mixture equivalence ratio of the maximum laminar flame speed on various hydrogen peroxide additions and concentrations. The flame speed from the experiment was underestimated compared with the numerical simulation, presumably owing to the early decomposition of hydrogen peroxide. Using a hydrogen peroxide solution with a concentration higher than 70% is advisable to increase the overall laminar flame speed of premixed methane/air flames.

    Abstract i 摘要 iii Acknowledgment v Table of Contents vii List of Figures ix List of Tables xiii Nomenclature xv Chapter 1 Introduction 1 1.1 Hydrogen peroxide (H2O2) 3 1.2 Oxidizer enhancement strategy 5 1.2.1 Oxygen enrichment combustion 5 1.2.2 Hydrogen peroxide addition 6 1.3 Common gaseous fuel combustion 7 1.3.1 Methane combustion 7 1.3.2 Carbon monoxide combustion 7 1.3.3 Hydrogen combustion 9 1.4 Motivations and objectives 10 1.5 Structure of the dissertation 11 Chapter 2 Methodology 13 2.1 Numerical methodology 13 2.1.1 Governing equation 14 2.1.2 Numerical setup 17 2.1.3 Chemical mechanism 21 2.2 Experimental methodology 22 2.2.1 Experimental set-up 22 2.2.2 Phase transition behaviour of H2O2 solutions 23 2.2.3 Evaporation system of hydrogen peroxide solution 27 2.2.4 Flame speed measurement methodology 28 2.2.5 Uncertainty analysis 30 Chapter 3 Analysis of H2O2 additions and O2 - enrichment on CH4 premixed combustion 31 3.1 Pure gaseous H2O2 addition and oxygen (O2) - enrichment premixed methane (CH4) combustion 32 3.1.1 Mechanism validation 32 3.1.2 Adiabatic flame temperature 34 3.1.3 Laminar flame speed 35 3.1.4 Heat release rate 39 3.2 Applications of the addition of H2O2 solution on CH4 premixed combustion 47 3.2.1 Experimental validation 47 3.2.2 Numerical simulations 48 3.2.3 Experimental results 51 3.2.3.1 Effect of different H2O2 additions on the SL 51 3.2.3.2 Effect of different H2O2 concentrations on the SL 53 3.2.3.3 Comparison between numerical and experimental results 54 4 Analysis of H2O2 additions and O2 - enrichment on CO premixed combustion 57 4.1 Pure gaseous H2O2 addition and O2 - enrichment premixed CO combustion 58 4.1.1 Mechanism validation 58 4.1.2 Laminar flame speed 60 4.1.3 Adiabatic flame temperature 61 4.2 Initiation of the CO/air premixed flame 61 4.2.1 Effects of different hydrogenous species additions on the Tad and SoL 62 4.2.2 Effects of different hydrogenous species additions on HRR 67 Chapter 5 Analysis of pure gaseous H2O2 additions and O2 - enrichment on H2 premixed combustion 71 5.1 Mechanism validation 71 5.2 Laminar flame speed 73 5.3 Adiabatic flame temperature 74 Chapter 6 General comparison 75 6.1 General comparison 75 Chapter 7 Conclusions and future works 79 7.1 Conclusions 79 7.2 Future works 81 References 83 List of Publications 89

    [1] Manoj Kumar, Sachin Kumar, and S. K. Tyagi, Design, development and technological advancement in the biomass cookstoves: A review, Renew. Sust. Energ. Rev. 26, 265–285 (2013).
    [2] I. Glassman and R. A. Yetter, Combustion, Academic Press, 5 edition, 2014.
    [3] A. Turbiez, A. El Bakali, J. F. Pauwels, A. Rida, and P. Meunier, Experimental study of a low pressure stoichiometric premixed methane, methane/ethane, methane/ethane/propane and synthetic natural gas flames, Fuel 83, 933–941 (2004).
    [4] M. Rightley and F. Williams, Analytical approximations for structures of wet CO flames with one-step reduced chemistry, Combust. Flame 101, 287–301 (1995).
    [5] M. L. Rightley and F. A. Williams, Burning velocities of CO flames, Combust Flame 110, 285–297 (1997).
    [6] A. Fauzy, G.-B. Chen, and T.-H. Lin, Applications of Hydrogenous Species for Initiation of Carbon Monoxide/Air Premixed Flame, Energies 18, 3003 (2025).
    [7] H. Sun, S. Yang, G. Jomaas, and C. Law, High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion, Proc. Combust. Inst. 31, 439–446 (2007).
    [8] S. G. Davis, A. V. Joshi, H. Wang, and F. Egolfopoulos, An optimized kinetic model of H2/CO combustion, Proc. Combust. Inst. 30, 1283–1292 (2005).
    [9] A. Kéromnès, W. K. Metcalfe, K. A. Heufer, N. Donohoe, A. K. Das, C.-J. Sung, J. Herzler, C. Naumann, P. Griebel, O. Mathieu, M. C. Krejci, E. L. Petersen, W. J. Pitz, and H. J. Curran, An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures, Combust Flame 160, 995–1011 (2013).
    [10] X. Chen, Q. Liu, Q. Jing, Z. Mou, Y. Shen, J. Huang, and H. Ma, The characteristics of flame propagation in hydrogen/oxygen mixtures, Int. J. Hydrogen Energ. 47, 10069–10082 (2022).
    [11] H. A. Yepes and A. A. Amell, Laminar burning velocity with oxygen-enriched air of syngas produced from biomass gasification, Int. J. Hydrog. Energy 38, 7519–7527 (2013).
    [12] J. W. Han, C. E. Lee, S. M. Kum, and Y. S. Hwang, Study on the improvement of chemical reaction mechanism of methane based on the laminar burning velocities in OEC, Energy Fuels 21, 3202–3207 (2007).
    [13] E. E. Fordoei, K. Mazaheri, and A. Mohammadpour, Numerical study on the heat transfer characteristics, flame structure, and pollutants emission in the MILD methane-air, oxygen-enriched and oxy-methane combustion, Energy 218, 119524 (2021).
    [14] A. Mazas, B. Fiorina, D. Lacoste, and T. Schuller, Effects of water vapor addition on the laminar burning velocity of oxygen-enriched methane flames, Combust. Flame 158,2428–2440 (2011).
    [15] G. Goor, J. Glenneberg, S. Jacobi, J. Dadabhoy, and E. Candido, Hydrogen Peroxide, pages 1–40, John Wiley and Sons, Ltd, 2019.
    [16] A. Fauzy, G. B. Chen, and T.-H. Lin, Numerical Analysis of Hydrogen Peroxide Addition and Oxygen-Enriched Methane Combustion, ACS Omega 8, 16094–16105 (2023).
    [17] G. B. Chen, Y. H. Li, T. S. Cheng, H. W. Hsu, and Y. C. Chao, Effects of hydrogen peroxide on combustion enhancement of premixed methane/air flames, Int. J. Hydrogen Energ. 36, 15414–15426 (2011).
    [18] G.-B. Chen, Y.-H. Li, T.-S. Cheng, and Y.-C. Chao, Chemical effect of hydrogen peroxide addition on characteristics of methane–air combustion, Energy 55, 564–570 (2013-06).
    [19] G.-B. Chen and F.-H. Wu, Numerical Simulation of Ammonia Combustion at Different Hydrogen Peroxide Concentrations, Int. J. Energy Res. 2023, 1–15 (2023).
    [20] F. H. Wu and G. B. Chen, Numerical study of hydrogen peroxide enhancement of ammonia premixed flames, Energy 209, 118118 (2020).
    [21] W. Eul, A. Moeller, and N. Steiner, Hydrogen Peroxide, John Wiley and Sons, Ltd, 2001.
    [22] Z. B. Jildeh, P. Kirchner, K. Baltes, P. H. Wagner, and M. J. Schöning, Development of an in-line evaporation unit for the production of gas mixtures containing hydrogen peroxide–numerical modeling and experimental results, Int. J. Heat. Mass. Tran. 143, 118519 (2019).
    [23] R. Baldwin and D. Brattan, Homogeneous gas-phase decomposition of hydrogen peroxide, Symp. Combust. Proc. 8, 110–119 (jan 1961).
    [24] C.-K. Kuan, G.-B. Chen, and Y.-C. Chao, Development and Ground Tests of a 100-Millinewton Hydrogen Peroxide Monopropellant Microthruster, J. Propul. Power 23, 1313–1320 (2007).
    [25] R. Humble, Bipropellant engine development using hydrogen peroxide and a hypergolic fuel, in 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, page 3554, Reston, Virigina, July 2000.
    [26] A. Okninski, J. Kindracki, and P. Wolanski, Multidisciplinary optimisation of bipropellant rocket engines using H2O2 as oxidiser, Aerosp. Sci. Technology 82-83, 284–293(2018).
    [27] W. Florczuk and G. P. Rarata, Performance evaluation of the hypergolic green propellants based on the HTP for a future next generation spacecrafts, in 53rd AIAA/SAE/ASEE Joint Propulsion Conference, page 4849, Atlanta, GA, July 2017.
    [28] S. A. Whitmore and D. P. Merkley, Arc-Ignition of a 70%-85% Hydrogen Peroxide/ABS Hybrid Rocket System, in 53rd AIAA/SAE/ASEE Joint Propulsion Conference, page 5047, Atlanta, GA, July 2017.
    [29] N. Merlo, T. Boushaki, C. Chauveau, S. de Persis, L. Pillier, B. Sarh, and I. Gökalp, Experimental Study of Oxygen Enrichment Effects on Turbulent Non-premixed Swirling Flames, Energy Fuels 27, 6191–6197 (2013).
    [30] D. S.-K. Ting and G. T. Reader, Hydrogen peroxide for improving premixed methane-air combustion, Energy 30, 313–322 (2005).
    [31] E.-A. Tingas, The chemical dynamics of hydrogen/hydrogen peroxide blends diluted with steam at compression ignition relevant conditions, Fuel 296, 120594 (2021).
    [32] E. A. Tingas, Computational analysis of the effect of hydrogen peroxide addition on premixed laminar hydrogen/air flames, Fuel 302, 121081 (2021).
    [33] K.-B. Nguyen, T. Dan, and I. Asano, Combustion, performance and emission characteristics of direct injection diesel engine fueled by Jatropha hydrogen peroxide emulsion, Energy 74, 301–308 (2014).
    [34] J. Zhou, D. Zheng, H.-S. Peng, and T. Zhong, Experimental study on the ignition delay characteristics of pyrolysis gas from kerosene with hydrogen peroxide addition, Case Stud. Therm. Eng. 60, 104788 (2024).
    [35] A. Fauzy, G.-b. Chen, and T.-h. Lin, Applications of the addition of hydrogen peroxide solution on methane premixed combustion, Case Stud. Therm. Eng. 73, 106403 (2025).
    [36] A. Majstorović, V. Babić, and M. Todić, Carbon monoxide in the process of uncontrolled combustion - occurrence, hazards and first aid, J. Phys.: Conf. Ser. 1426, 012008 (2020).
    [37] X. Shen, Z. Zhang, Z. Dou, and C. Zhang, Premixed CO/air combustion in a closed duct with inhibition, Energy 230, 120782 (2021).
    [38] G. Von Elbe and B. Lewis, Free-radical reactions in glow and explosion of carbon monoxide-oxygen mixtures, Combust Flame 63, 135–150 (1986).
    [39] G. Hadman, H. W. Thompson, and C. N. Hinshelwood, The explosive oxidation of carbon monoxide at lower pressures, Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci. 138, 297–311 (1932).
    [40] A. Leah and H. Watson, Radiation from explosion flames of carbon monoxide, Combust. Flame 3, 169–186 (1959).
    [41] W. Wang and B. Rogg, Reduced kinetic mechanisms and their numerical treatment I: Wet CO flames, Combust. Flame 94, 271–292 (1993).
    [42] G. Taek Kim, J. Park, S. Ho Chung, and C. Sang Yoo, Effects of water vapor addition on downstream interaction in CO/O2 counterflow premixed flames, Fuel 342, 127888 (2023).
    [43] Y. Zhang, O. Mathieu, E. L. Petersen, G. Bourque, and H. J. Curran, Assessing the predictions of a NO x kinetic mechanism on recent hydrogen and syngas experimental data, Combust Flame 182, 122–141 (2017).
    [44] D. G. Goodwin, H. K. Moffat, I. Schoegl, R. L. Speth, and B. W. Weber, Cantera: An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes, Aug. 2023, Version 8.0.0.
    [45] X. Hui, D. Zheng, C. Zhang, X. Xue, and C.-J. Sung, Effects of hydrogen peroxide addition on two-stage ignition characteristics of n-heptane/air mixtures, Int. J. Hydrogen Energ. 44, 24312–24320 (2019).
    [46] G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, J. William C. Gardiner, V. V. Lissianski, and Z. Qin, GRI-Mech 3.0, 1999.
    [47] F. Williams, The San Diego Mechanism, Chemical-Kinetic Mechanisms for Combustion Applications; UC San Diego, Combustion Research Group., Accessed: 2024-09-30.
    [48] H. Hashemi, J. M. Christensen, S. Gersen, H. Levinsky, S. J. Klippenstein, and P. Glarborg, High-pressure oxidation of methane, Combust. Flame 172, 349–364 (2016).
    [49] R. Shang, Z. Zhuang, Y. Yang, and G. Li, Laminar flame speed of H2/CH4/air mixtures with CO2 and N2 dilution, Int. J. Hydrogen Energ. 47, 32315–32329 (2022).
    [50] P. K. Konstantinos Souflas, Emmanouil Z. Psarakis and F. N. Egolfopoulos, Low Cost Image Processing of Bunsen Flame Photography for Estimation of Flame Speeds, Combust. Sci. Technol. 191, 1123–1138 (2019).
    [51] F. G. Keyes, The thermodynamic properties of water substance 0° to 150°C Part VI, J. Chem. Phys. 15, 602–612 (1947).
    [52] B. G. Scatchard, G. M. Kavanagh, B. Ticknor, G. Scatciiard, and G. M. Kavanagh, Journal of the Chemical Society, J. Chem. Soc. C 74, X001 (1970).
    [53] W. C. Schumb, C. N. Satterfield, and R. L. Wentworth, HYDROGEN PEROXIDE. PART 2. CHAPTER 5. PHYSICAL PROPERTIES. CHAPTER 6. STRUCTURE, Technical report, 1953.
    [54] Y. Zhang, B. Han, X. Li, W. Zhang, L. Zhang, Y. Zhao, and S. Sun, Insight into the regulation effect of steam dilution on oxygen-enriched ammonia combustion characteristics, Fuel 370, 131832 (2024).
    [55] Y.-H. Li, J.-W. Liang, and H.-J. Lin, Development of laminar burning velocity measurement system in premixed flames with hydrogen-content syngas or strong oxidizer conditions in a slot burner, Case Stud. Therm. Eng. 35, 102162 (2022).
    [56] Y. He, Z. Wang, L. Yang, R. Whiddon, Z. Li, J. Zhou, and K. Cen, Investigation of laminar flame speeds of typical syngas using laser based Bunsen method and kinetic simulation, Fuel 95, 206–213 (2012).
    [57] M. Cafiero, V. Dias, S. Iavarone, A. Coussement, H. Jeanmart, and A. Parente, Investigation of temperature correction methods for fine wire thermocouple losses in low pressure flat premixed laminar flames, Combust. Flame 244, 112248 (2022).
    [58] S. de Persis, F. Foucher, L. Pillier, V. Osorio, and I. Gökalp, Effects of O2 enrichment and CO2 dilution on laminar methane flames, Energy 55, 1055–1066 (2013).
    [59] E. Hu, Z. Huang, J. He, C. Jin, and J. Zheng, Experimental and numerical study on laminar burning characteristics of premixed methane-hydrogen-air flames, Int. J. Hydrogen Energ. 34, 4876–4888 (2009).
    [60] C. Tang, Z. Huang, and C. Law, Determination, correlation, and mechanistic interpretation of effects of hydrogen addition on laminar flame speeds of hydrocarbon–air mixtures, Proc. Combust. Inst. 33, 921–928 (2011).
    [61] H. Wang, T. O. Hahn, C. J. Sung, and C. K. Law, Detailed oxidation kinetics and flame inhibition effects of chloromethane, Combust. Flame 105, 291–307 (1996).
    [62] C. J. Sung, Y. Huang, and J. A. Eng, Effects of reformer gas addition on the laminar flame speeds and flammability limits of n-butane and iso-butane flames, Combust. Flame 126, 1699–1713 (2001).
    [63] Z. Li, W. Han, D. Liu, and Z. Chen, Laminar flame propagation and ignition properties of premixed iso-octane/air with hydrogen addition, Fuel 158, 443–450 (2015).
    [64] Y. Cheng, C. Tang, and Z. Huang, Kinetic analysis of H2 addition effect on the laminar flame parameters of the C1-C4 n-alkane-air mixtures: From one step overall assumption to detailed reaction mechanism, Int. J. Hydrogen Energ. 40, 703–718 (2015).
    [65] M. Portarapillo, R. Sanchirico, G. Luciani, and A. Di Benedetto, Flame propagation of combustible dusts: A Mallard-Le Chatelier inspired model, Combust Flame 251, 112737 (2023).
    [66] Y. Dong, C. M. Vagelopoulos, G. R. Spedding, and F. N. Egolfopoulos, Measurement of laminar flame speeds through digital particle image velocimetry: Mixtures of methane and ethane with hydrogen, oxygen, nitrogen, and helium, Proc. Combust. Inst. 29, 1419–1426 (2002).
    [67] K. J. Bosschaart and L. P. De Goey, The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method, Combust Flame 136, 261–269 (2004).
    [68] C. J. Marzzacco, The Enthalpy of Decomposition of Hydrogen Peroxide: A General Chemistry Calorimetry Experiment, Journal of Chemical Education 76, 1517 (1999).
    [69] P. Pȩdziwiatr, F. Mikołajczyk, D. Zawadzki, K. Mikołajczyk, and A. Bedka, Decomposition of hydrogen peroxide - kinetics and review of chosen catalysts, Acta Innovations, 45–52 (2018).
    [70] C. Dong, Q. Zhou, Q. Zhao, Y. Zhang, T. Xu, and S. Hui, Experimental study on the laminar flame speed of hydrogen/carbon monoxide/air mixtures, Fuel 88, 1858–1863 (2009).
    [71] K. Chen, K. Tan, Z. Wei, and U. Kahangamage, Numerical investigation of laminar flame speed and NO emission of hydrogen-enriched ammonia at elevated pressures or temperatures, Fuel 386, 134337 (2025).
    [72] Y. Lafay, B. Renou, G. Cabot, and M. Boukhalfa, Experimental and numerical investigation of the effect of H2 enrichment on laminar methane–air flame thickness, Combust. Flame 153, 540–561 (2008).
    [73] G. Koroll and S. Mulpuru, The effect of dilution with steam on the burning velocity and structure of premixed hydrogen flames, Symp. Combust. Proc. 21, 1811–1819 (1988).
    [74] R. Zitoun and B. Deshaies, Burning velocities of rich H2-O2 flames under cryogenic conditions, Combust. Flame 109, 427–435 (may 1997).

    無法下載圖示 校內:2027-01-01公開
    校外:2027-01-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE