簡易檢索 / 詳目顯示

研究生: 劉益誠
Liu, Yi-Cheng
論文名稱: 利用光學同調斷層掃描術量測樣本折射率與厚度之研究
On Measuring Group Refractive Index and Thickness of Samples Using Optical Coherence Tomography
指導教授: 鄭旭志
Cheng, Hsu-Chih
黃振發
Huang, Jen-Fa
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 60
中文關鍵詞: 厚度光學斷層掃描術低同調干涉術折射率
外文關鍵詞: Refractive Index, Optical coherence tomography(OCT), Low-coherence interference(LCI), Thickness
相關次數: 點閱:117下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光學同調斷層掃描(Optical coherence tomography,OCT)是新穎的光學照影技術。OCT是以麥克森干涉儀為基本架構並且使用低同調光源可以針對樣本做非侵入式的內部照影。
    在科學或是工業的領域上有一些技術可以量測樣本的折射率,如折射儀。然而這些技術通常只能得到樣本的折射率,為了得到樣本的幾何厚度就必須額外使用其他技術,因此研究可同時量測樣本折射率以及幾何厚度的方法是重要的。
    在本論文中,我們提出一套新的光學斷層掃描系統應用於同時量測樣本折射率以及幾何厚度。此系統除了利用光纖式的結構降低外接環境的干擾之外,同時利用光程差的概念設計而成,最後以穿透較佳的玻璃來測試本系統的可行性。

    Optical coherence tomography (OCT), based on Michelson interferometer and utilizing low coherence light as the optical source, is a novel optical imaging technique used to perform noninvasive image of internal structures material.
    There are some techniques such as the refractometry are often used to measure the refractive index of the sample both in science and industry. In order to measure the thickness of the sample, must add the other technique to the system. Therefore, to find a method of simultaneous measurement of refractive index and thickness of sample is important.
    In this thesis, we present a novel OCT scheme for measurement of refractive index and thickness of sample simultaneously. This system utilizes optic-fiber type structure to reduce the interference of the real environment, and use the conception of the optical path distances to design. We utilize the penetrating better glass to test the feasibility of this system finally.

    Chapter 1. Introduction 1 1.1. The Objective and Motivations of Research 1 1.2. Historical review of OCT and Measure Group Refractive Index in OCT 2 1.3. Overview of Chapters 6 Chapter 2. Principle of Optical Coherence Tomography 7 2.1. Theory of Low Coherence interferometer 7 2.2. Axial Resolution 14 2.3. Lateral Resolution 16 2.4. Scattering and Absorption 17 2.5. Refractive Index and Dispersion 20 2.6. Optical Path Length 23 Chapter 3. Instruments introduction for Experiment 26 3.1. Lists of Equipments 26 3.2. Specifications of Equipments 27 Chapter 4. New systematic structure and method 33 4.1. New systematic structure 33 4.2. Theoretical analysis 37 4.3. Experiment steps 40 Chapter 5. Experimental results and Discussion 45 5.1. Experimental results 45 5.2. Discussions 49 Chapter 6. Conclusion and Future Work 55 6.1. Conclusion 55 6.2. Future Work 56 6.2.1. Consider the Real Environmental Conditions 56 6.2.2. Powerful Instruments 56 6.2.3. Measure the Dispersive Material and Multiple Layers 56 References 57

    [1] K. Takada, I. Yokohama, K. Chida, and J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt. 26, 1603–1606, 1987.
    [2] H. H. Gilgen, R. P. Novak, R. P. Salathe, W. Hodel, and P. Beaud, “Submillimeter optical reflectmetry,” J. Lightwave Technol. 7, 1225–1233, 1989.
    [3] E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866, 1993.
    [4] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science, vol. 254, pp. 1178–1181, 1991.
    [5] R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Exp., vol. 11, pp. 889-894, 2003.
    [6] R. C. Youngquist, S. Carr, and D. E. N. Davies, “Optical coherence domain reflectometry: A new optical evaluation technique,” Opt. Lett., vol. 12, pp. 158–160, 1987.
    [7] A. F. Fercher, K. Mengedoht, and W. Werner, “Eye-length measurement by interferometry with partially coherent light,” Opt. Lett., vol. 13, pp. 1867–1869. 1988.
    [8] W. Clivaz, F. Marquis-Weible, R. P. Salathe, R. P. Novak, and H. H. Gilgen, “High-resolution reflectometry in biological tissue,” Opt. Lett., vol. 17, pp. 4–6, 1992.
    [9] M. J. Everett, K. Schoenenberger, B. W. Colston, Jr., and L. B. Da Si, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett., vol. 23, pp. 228-230, 1998.
    [10] L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett., vol. 27, pp. 530-532, 2002.
    [11] G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett., vol. 20, pp. 2258-2261, 1995.
    [12] T. Fukano and I. Yamaguchi, “Simultaneous measurement of thicknesses and refractive indices of multiple layers by a lowcoherence confocal interference microscope,” Opt. Lett., vol. 21, 1942–1944, 1996.
    [13] M. Haruna, M. Ohmi, T. Mitsuyama, H. Tajiri, H. Maruyama, and M. Hashimoto, “Simultaneous measurement of the phase and group indices and the thickness of transparent plates by low-coherence interferometry,” Opt. Lett., vol. 23, pp. 966-968, 1998.
    [14] A. Hirai and H. Matsumoto, “Low-coherence tandem interferometer for measurement of group refractive index without knowledge of the thickness of the test sample,” Opt. Lett., vol. 28, pp. 2112–2114, 2003.
    [15] H. Matsumoto, K. Sasaki and A. Hirai, “In situ measurement of group refractive index using tandem low-coherence interferometer,” Opt. Commun., vol. 266, 214–217, 2006.
    [16] J. W. Goodman, Statistical Optics, New York, John Wiley and Sons, pp. 164-169, 1985.
    [17] D. Guenther Robert , Modern Optics, 1990.
    [18] 李冠卿, “近代光學,” 聯經出版事業有限公司, 1988.
    [19] E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, ”Full-field optical coherence microscopy,” Opt. Lett., vol.23, pp. 244-246, 1998.
    [20] A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. B. Moreno, R. Leitgeb, W. Drexler, and H. Sattmann,” A thermal light source technique for optical coherence tomography,” Opt. Commun., vol. 185, pp. 57-64, 2000.
    [21] B. C. Wilson, and S. L. Jacques, ”Optical reflectance and transmittance of tissues: principles andapplications,” IEEE J. Quan. Electro., vol. 26, pp.2186-2199, 1990.
    [22] M. J. Cobb, X. Liu, and X. Li, ” Continuous Focus Tracking for Real-Time Optical Coherence Tomography,” Opt. Lett., vol. 30, pp. 1680-1682, 2005.
    [23] P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt., vol. 35, pp. 1566-1573, 1996.

    下載圖示 校內:立即公開
    校外:2009-07-15公開
    QR CODE