| 研究生: |
胡靜緹 Hu, Ging-Ti |
|---|---|
| 論文名稱: |
新穎性的藍色螢光蛋白在生物應用上的開發 The Study of Novel Blue Fluorescent Protein for Biological Application |
| 指導教授: |
張敏政
Chang, Ming-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 藍色螢光蛋白 、螢光共振能量轉移 、厭氧 |
| 外文關鍵詞: | blue Fluorescence proteins, FRET, hypoxia |
| 相關次數: | 點閱:108 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
GFP,螢光蛋白的發現為研究者提供了有利的工具,常用於研究小分子在生物體內的功能性或是位置,除了上述的應用外還可用於研究蛋白質的交互作用,例如:螢光共振能量轉移( FRET ),目前已有許多的藍色螢光蛋白被開發但仍存在low quantum yields與photostability的問題,我們從Vibrio vulnificus找到的藍色螢光蛋白dBP6,經由胺基酸序列比對發現同源於SDR家族,其發光機制是藉由結合上NADPH放大內生性螢光,利用E. coil表現大量dBP6蛋白並測其螢光光譜,得知該蛋白的最大激發波長為335 nm 而放射波長為450 nm,此蛋白的放射波長很接近GFP的激發波長(~488 nm) 所以我們想要在FRET應用以dBP6作為GFP的donor,為此我們將dBP6與EGFP以數個胺基酸相連並在之中設計caspase-3辨認切位為設計的質體命名為mBcg,在H1299中表現mBcg經UV激發可以偵測到GFP的訊號,表示有FRET的現象發生,而在活化caspase-3之後,可以看到綠色螢光逐漸消失而同時地藍色螢光漸漸出現;另一方面,我們利用已知有交互作用的蛋白ribosomal phosphoprotein p0與GCIP來證實以dBP6與EGFP作FRET配對的可行性,在UV激發下可以觀察到在細胞質的部分有綠色螢光;從GFP衍伸而來的螢光蛋白其發光機制需要氧的參與,而dBP6的輔因子是NADPH,結果不管在細胞或是細菌中dBP6可以在厭氧環境中產生螢光而其他的螢光蛋白則無法,所以dBP6在生物醫學上的應用是具有發展潛力。
Fluorescence proteins (FPs), such as green fluorescent proteins (GFPs) are used in a variety of applications to study the organization and function of living systems. FPs encoded in frame with proteins of interest made it possible to observe their localization, movement, turnover, and aging. Moreover, complex functional studies can be performed using FPs such as visualizing protein-protein interactions in living cells by FRET (Fluorescence Resonance Energy Transfer) detection technique. Although a few blue fluorescent proteins derived from GFP have been developed, they still have low quantum yields and poor photostability. In addition, all members of GFP family have a major drawback-their strict requirement for molecular oxygen as a cofactor for the synthesis of their respective chromophores. The goal of this study is to evaluate whether our developed BFP (dBP6) could be used for in vivo labeling and detection in both the presence and absence of oxygen. dBP6 has the excitation/emission peaks at 352/456 nm and it is derived from BFPvv, a FP isolated from bacterium and fluoresces through augmenting the intrinsic fluorescence of NADPH bound to it chromophore. To achieve our goal, plasmid mBcg that contains dBP6 and EGFP with the caspase-3 cleavage sequence, DEVD, within the linker between fluorescent proteins, was constructed and transfected into mammalian cell H1299, and its fluorescence was examined. The results showed that H1299 containing mBcg exhibited green fluorescence when irradiated by UV source. After activation of caspase-3, cleavage of mBcg led to a decrease in green fluorescence of EGFP and a simultaneous increase in blue fluorescence of dBP6 was observed. On the other hand, our previous data revealed that GCIP could interact with ribosomal phosphoprotein p0. We constructed a plasmid dBP6-GCIP and a plasmid EGFP-P0, and cotransfected the plasmids dBP6-GCIP and EGFP-P0 into H1299. The results showed that transfected cells exhibited green fluorescence in cytoplasm when irradiated by UV source. In conclusion, through construction of a variety of plasmids and the examination of their fluorescence under various conditions, dBP6 is founded to be applicable in mammalian cells in vivo labeling under aerobic and anaerobic conditions.
1. Yang, F., Moss, L.G. & Phillips, G.N., Jr. The molecular structure of green fluorescent protein. Nat Biotechnol 14, 1246-1251 (1996).
2. Cody, C.W., Prasher, D.C., Westler, W.M., Prendergast, F.G. & Ward, W.W. Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry 32, 1212-1218 (1993).
3. Morise, H., Shimomura, O., Johnson, F.H. & Winant, J. Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry 13, 2656-2662 (1974).
4. Tsien, R.Y. The green fluorescent protein. Annu Rev Biochem 67, 509-544 (1998).
5. Cairns, R.A., Harris, I.S. & Mak, T.W. Regulation of cancer cell metabolism. Nat Rev Cancer 11, 85-95 (2011).
6. Chudakov, D.M., Matz, M.V., Lukyanov, S. & Lukyanov, K.A. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90, 1103-1163 (2010).
7. Heim, R. & Tsien, R.Y. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6, 178-182 (1996).
8. Heim, R., Prasher, D.C. & Tsien, R.Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A 91, 12501-12504 (1994).
9. Tomosugi, W., et al. An ultramarine fluorescent protein with increased photostability and pH insensitivity. Nat Methods 6, 351-353 (2009).
10. Yang, T.T., et al. Improved fluorescence and dual color detection with enhanced blue and green variants of the green fluorescent protein. J Biol Chem 273, 8212-8216 (1998).
11. Rizzuto, R., et al. Double labelling of subcellular structures with organelle-targeted GFP mutants in vivo. Curr Biol 6, 183-188 (1996).
12. Kremers, G.J., Goedhart, J., van den Heuvel, D.J., Gerritsen, H.C. & Gadella, T.W., Jr. Improved green and blue fluorescent proteins for expression in bacteria and mammalian cells. Biochemistry 46, 3775-3783 (2007).
13. Ai, H.W., Shaner, N.C., Cheng, Z., Tsien, R.Y. & Campbell, R.E. Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Biochemistry 46, 5904-5910 (2007).
14. Mena, M.A., Treynor, T.P., Mayo, S.L. & Daugherty, P.S. Blue fluorescent proteins with enhanced brightness and photostability from a structurally targeted library. Nat Biotechnol 24, 1569-1571 (2006).
15. Shu, X., Shaner, N.C., Yarbrough, C.A., Tsien, R.Y. & Remington, S.J. Novel chromophores and buried charges control color in mFruits. Biochemistry 45, 9639-9647 (2006).
16. Barondeau, D.P., Kassmann, C.J., Tainer, J.A. & Getzoff, E.D. The case of the missing ring: radical cleavage of a carbon-carbon bond and implications for GFP chromophore biosynthesis. J Am Chem Soc 129, 3118-3126 (2007).
17. Wang, L., Jackson, W.C., Steinbach, P.A. & Tsien, R.Y. Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci U S A 101, 16745-16749 (2004).
18. Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. A guide to choosing fluorescent proteins. Nat Methods 2, 905-909 (2005).
19. Hansen, M.C., Palmer, R.J., Jr., Udsen, C., White, D.C. & Molin, S. Assessment of GFP fluorescence in cells of Streptococcus gordonii under conditions of low pH and low oxygen concentration. Microbiology 147, 1383-1391 (2001).
20. Wiedenmann, J., et al. A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria). Proc Natl Acad Sci U S A 99, 11646-11651 (2002).
21. Chudakov, D.M., Lukyanov, S. & Lukyanov, K.A. Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol 23, 605-613 (2005).
22. Verkhusha, V.V. & Lukyanov, K.A. The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nat Biotechnol 22, 289-296 (2004).
23. Zhu, H., et al. Ubiquitous expression of mRFP1 in transgenic mice. Genesis 42, 86-90 (2005).
24. Long, J.Z., Lackan, C.S. & Hadjantonakis, A.K. Genetic and spectrally distinct in vivo imaging: embryonic stem cells and mice with widespread expression of a monomeric red fluorescent protein. BMC Biotechnol 5, 20 (2005).
25. Wang, S. & Hazelrigg, T. Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature 369, 400-403 (1994).
26. Lippincott-Schwartz, J., Altan-Bonnet, N. & Patterson, G.H. Photobleaching and photoactivation: following protein dynamics in living cells. Nat Cell Biol Suppl, S7-14 (2003).
27. Terskikh, A., et al. "Fluorescent timer": protein that changes color with time. Science 290, 1585-1588 (2000).
28. Li, X., et al. Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem 273, 34970-34975 (1998).
29. Wang, Y., Shyy, J.Y. & Chien, S. Fluorescence proteins, live-cell imaging, and mechanobiology: seeing is believing. Annu Rev Biomed Eng 10, 1-38 (2008).
30. Honda, K., et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434, 772-777 (2005).
31. Ting, A.Y., Kain, K.H., Klemke, R.L. & Tsien, R.Y. Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proc Natl Acad Sci U S A 98, 15003-15008 (2001).
32. Ai, H.W., Hazelwood, K.L., Davidson, M.W. & Campbell, R.E. Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors. Nat Methods 5, 401-403 (2008).
33. Galperin, E., Verkhusha, V.V. & Sorkin, A. Three-chromophore FRET microscopy to analyze multiprotein interactions in living cells. Nat Methods 1, 209-217 (2004).
34. Piston, D.W. & Kremers, G.J. Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem Sci 32, 407-414 (2007).
35. Siegel, R.M., et al. Measurement of molecular interactions in living cells by fluorescence resonance energy transfer between variants of the green fluorescent protein. Sci STKE 2000, pl1 (2000).
36. Souslova, E.A. & Chudakov, D.M. Photoswitchable cyan fluorescent protein as a FRET donor. Microsc Res Tech 69, 207-209 (2006).
37. Zapata-Hommer, O. & Griesbeck, O. Efficiently folding and circularly permuted variants of the Sapphire mutant of GFP. BMC Biotechnol 3, 5 (2003).
38. Kohl, T., Heinze, K.G., Kuhlemann, R., Koltermann, A. & Schwille, P. A protease assay for two-photon crosscorrelation and FRET analysis based solely on fluorescent proteins. Proc Natl Acad Sci U S A 99, 12161-12166 (2002).
39. Zhang, S., Ma, C. & Chalfie, M. Combinatorial marking of cells and organelles with reconstituted fluorescent proteins. Cell 119, 137-144 (2004).
40. Demidov, V.V., et al. Fast complementation of split fluorescent protein triggered by DNA hybridization. Proc Natl Acad Sci U S A 103, 2052-2056 (2006).
41. Heidelberg, J.F., et al. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406, 477-483 (2000).
42. Li, B. & Lin, S.X. Fluorescence-energy transfer in human estradiol 17 beta-dehydrogenase-NADPH complex and studies on the coenzyme binding. Eur J Biochem 235, 180-186 (1996).
43. Verlick, S.F. Fluorescence spectra and polarization of glyceraldehyde-3-phosphate and lactic dehydrogenase coenzyme complexes. J Biol Chem 233, 1455-1467 (1958).
44. Chang, C.C., Chuang, Y.C., Chen, Y.C. & Chang, M.C. Bright fluorescence of a novel protein from Vibrio vulnificus depends on NADPH and the expression of this protein is regulated by a LysR-type regulatory gene. Biochem Biophys Res Commun 319, 207-213 (2004).
45. Chae, H.J., et al. Molecular mechanism of staurosporine-induced apoptosis in osteoblasts. Pharmacol Res 42, 373-381 (2000).
46. Chang, T.W., et al. Ribosomal phosphoprotein P0 interacts with GCIP and overexpression of P0 is associated with cellular proliferation in breast and liver carcinoma cells. Oncogene 27, 332-338 (2008).
47. Kao, T.H., Chen, Y., Pai, C.H., Chang, M.C. & Wang, A.H. Structure of a NADPH-dependent blue fluorescent protein revealed the unique role of Gly176 on the fluorescence enhancement. J Struct Biol 174, 485-493 (2011).
48. Gratton, E., Breusegem, S., Sutin, J., Ruan, Q. & Barry, N. Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods. J Biomed Opt 8, 381-390 (2003).
49. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. & Prasher, D.C. Green fluorescent protein as a marker for gene expression. Science 263, 802-805 (1994).
50. Amsterdam, A., Lin, S. & Hopkins, N. The Aequorea victoria green fluorescent protein can be used as a reporter in live zebrafish embryos. Dev Biol 171, 123-129 (1995).
51. Campbell, R.E., et al. A monomeric red fluorescent protein. Proc Natl Acad Sci U S A 99, 7877-7882 (2002).
校內:2021-12-31公開