簡易檢索 / 詳目顯示

研究生: 陳柏誠
Chen, Bo-chen
論文名稱: 以γ-聚麩胺酸改質聚酯型脂肪族聚氨基甲酸酯之製備、特性與血小板貼附性研究
Preparation, characterization, and platelet adhesion of gamma-poly(glutamic acid)-modified aliphatic poly(ester ureathane)s
指導教授: 林睿哲
Lin, Jui-che
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 58
中文關鍵詞: 聚氨基甲酸酯聚麩胺酸血液相容性
外文關鍵詞: Blood compatibility, Gamma-poly(glutamic acid), Polyurethane
相關次數: 點閱:85下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用1,6-己二異氰酸酯、聚己內酯與1,4-丁二醇合成具有不同平均硬鏈長度的脂肪族聚氨基甲酸酯,再將其摻混不同量的天然高分子聚麩胺酸來改善聚氨基甲酸酯的血液相容性。利用傅利葉紅外線光譜儀、微差掃描熱卡儀、吸水量測量、接觸角測試儀及體外血小板貼附實驗來探討加入聚麩胺酸對高分子的整體性質、表面性質及血液相容性的影響。研究結果顯示聚麩胺酸改質後的聚氨基甲酸酯具有較低的硬鏈段結晶區域熔融溫度、較小的接觸角及較高的吸水量,體外血小板貼附實驗結果得知,將聚麩胺酸摻混至聚氨基甲酸酯內,會降低血小板在聚氨基甲酸酯表面上的貼附數目及活化程度。

    Aliphatic polyurethanes based on 1,6-hexanethylene diisocyanate, polycaprolactone and 1,4-butanediol were synthesized. The polyurethanes with different average length of hard segments were blended with various weight percentage of poly(γ-glutamic acid) (γ-PGA), a natural polymer, to improve their blood compatibility. The polymer's bulk, surface and platelet-contacting properties were studied using Fourier transform infrared spectrophotometry, differential scanning calorimetry, water absorption analysis, static contact angle analysis and in vitro platelet adhesion experiments. The effects of γ-PGA incorporation on the thermal transition property, hydrophilicity/hydrophobicity and platelet-contacting property of the polyurethanes are discussed. γ-PGA modified polyurethanes exhibit a lower melting temperature of hard segment domains, smaller contact angle, and higher water absorption value than the polyurethanes without γ-PGA. In vitro platelet adhesion studies indicated that the addition of γ-PGA into aliphatic polyurethanes leads to a reduction in platelet adhesion and activation.

    目錄 目錄 ………………………………………………………………Ⅰ 圖目錄 ………………………………………………………………Ⅳ 表目錄 ………………………………………………………………Ⅴ 第一章 緒論…………………………………………………………1 1-1 生醫材料簡介………………………………………………1 1-2 凝血機制……………………………………………………4 1-2-1 血小板構造…………………………………………………4 1-2-2 血小板機能…………………………………………………5 1-3 聚氨基甲酸酯………………………………………………6 1-4 聚氨基甲酸酯組成…………………………………………7 1-4-1 二異氰酸酯…………………………………………………7 1-4-2 軟鏈段………………………………………………………10 1-4-3 鏈延長劑……………………………………………………11 1-4-4 催化劑………………………………………………………12 1-5 聚氨基甲酸酯生醫材料……………………………………13 1-6 研究動機……………………………………………………14 第二章 文獻回顧……………………………………………………16 2-1 影響血液相容性的因素……………………………………16 2-1-1 親水性表面…………………………………………………16 2-1-2 微相分離結構的表面………………………………………17 2-1-3 具有生物活性分子的表面…………………………………17 2-1-4 負電荷的表面………………………………………………19 2-2 聚己內酯……………………………………………………21 2-3 聚麩胺酸……………………………………………………21 第三章 實驗內容……………………………………………………24 3-1 藥品…………………………………………………………24 3-2 合成…………………………………………………………27 3-2-1 合成脂肪族聚氨基甲酸酯…………………………………27 3-2-2 酸處理γ-PGA………………………………………………28 3-2-3 γ-PGA摻混脂肪族聚氨基甲酸酯…………………………28 3-3 儀器設備……………………………………………………29 3-3-1 整體性質分析………………………………………………29 3-3-2 表面性質分析………………………………………………31 3-3-3 血小板貼附性分析…………………………………………32 第四章 結果與討論…………………………………………………34 4-1 聚氨基甲酸酯組成與分子量………………………………34 4-2 傅利葉紅外線光譜分析……………………………………36 4-3 熱轉移行為…………………………………………………38 4-4 吸水率………………………………………………………42 4-5 水面下水接觸角……………………………………………44 4-6 血小板貼附實驗……………………………………………46 第五章 總結與未來展望……………………………………………50 參考文獻 ………………………………………………………………51 圖目錄 Figure 1-1. The structure of commercial medical polymer: (a) PU, (b) silicon rubber, (c) PVC, (d) Nylon, (e) PMMA, (f) Teflon, and (g) Dacron…………………………………………3 Figure 1-2. Structure of the platelet…………………………4 Figure 1-3. The main reaction between isocyanates and (a) alcohol,(b) amine, and (c) water…………………………………8 Figure 1-4. Typical catalysts used for polyurethane synthesis………………………………………………………………12 Figure 2-1. Structures of heparin sulfate and heparin…………………………………………………………………18 Figure 2-2. Structures of (a) ionic γ-PGA, and (b)γ-PGA………………………………………………………………………22 Figure 3-1. Synthesis scheme for the preparation of the polyurethanes…………………………………………………………27 Figure 3-2. Measure the contact angle by captive bubble method…………………………………………………………………31 Figure 4-1. FTIR spectra of γ-PGA, PU, and γ-PGA/PU blend……………………………………………………………………37 Figure 4-2. DSC thermographs of the PU1, PU2, and Pellethane……………………………………………………………40 Figure 4-3. DSC thermographs of (a) γ-PGA/PU1, and (b) γ-PGA/PU2…………………………………………………………………41 Figure 4-4. SEM photographs after 1 h of platelet adhesion for (a) Pellethane, (b) PU1, and (c) PU2…………47 Figure 4-5. SEM photographs after 1 h of platelet adhesion for (a) PU1-G5, (b) PU1-G7.5, (c) PU1-G10, (d) PU1-12.5, and (e) PU1-G15…………………………………………48 Figure 4-6. SEM photographs after 1 h of platelet adhesion for (a) PU2-G5, (b) PU2-G7.5, (c) PU2-G10, (d) PU2-12.5, and (e) PU2-G15…………………………………………49 表目錄 Table 1-1. Cooper’s classification scheme for platelet adsorption………………………………………………………………6 Table 1-2. Typical diisocyanates used for polyurethane synthesis………………………………………………………………9 Table 1-3. Typical polyol soft segments used for polyurethane synthesis……………………………………………10 Table 1-4. Typical chain extenders used for polyurethane synthesis………………………………………………………………11 Table 3-1. The composition of Hepes-Tyrodes buffer solution………………………………………………………………33 Table 4-1. The composition and molecular weights of polyurethanes…………………………………………………………35 Table 4-2. Element analysis of polyurethanes………………35 Table 4-3. Thermal analysis data………………………………39 Table 4-4. Water absorption data………………………………43 Table 4-5. Captive bubble (underwater) static contact angle……………………………………………………………………45

    1. T. M. Ko, J. C. Lin, S. L. Cooper, ‘‘Surface characterization and platelet adhesion studies of plasma-sulphonated polyurethane’’, Biomaterials 14 (1993) 657.
    2. 何敏夫 編著,‘‘血液學’’,合記出版社,1993.
    3. M. D. Lelah, S. L. Cooper, ‘‘Polyurethane in Medicine’’, CRC Press, Boca Raton, FL, USA. (1986).
    4. O. Bayer, ‘‘The diisocyanate polyaddition process (polyurethane). Description of a new principle for building up high-molecular compounds’’, Angew. Chem. 59 (1947) 257.
    5. S. L. Cooper, A. V. Tobolsky, ‘‘Property of linear elastomeric polyurethane’’, J. Appl. Polym. Sci. 10 (1966) 1837.
    6. J. H. Hong, H. J. Jeon, J. H. Yoo, W. R. Yu, J. H. Youk, ‘‘Synthesis and characterization of biodegradable poly(ε-caprolactone-co-β-butyrolactone)-based polyurethane’’, Polym. Degra. Stab. 92 (2007) 1186.
    7. C. Hepburn, ‘‘Chemical and Basic Intermediates” In ‘‘Polyurethane elastomers’’ Elsevier Science, USA. (1992).
    8. D. Klempner, K. C. Frisch, ‘‘Polymer alloy: blend, block, grafts and interpenetrating networks’’, Plenum Press, New York. (1977).
    9. S. Braley, ‘‘The chemistry and properties of the medical-grade silicones’’, J. Macromol. Sci.-Chem. 4 (1970) 529.
    10. M. C. Tanzi, P. Verderio, M. G. Lampugnani, M. Resnati, E. Dejana, E. Sturani, ‘‘Cytotoxicity of some catalysts commonly used in the synthesis of copolymers for biomedical use’’, J. Mater. Sci.: Mater. Med. 5 (1994) 393.
    11. S. A. Guelcher, ‘‘Biodegradable polyurethanes synthesis and applications in regenerative medicine’’, Tissue Eng. 14 (2008) 3.
    12. V. Thomas, T. V. Kumari, M. Jayabalan, ‘‘In vitro studies on the effect of physical cross-linking on the biological performance of aliphatic poly(urethane urea) for blood contact applications’’, Biomacromolecules 2 (2001) 588.
    13. H. J. Lee, T. Matsuda, ‘‘Surface photograft polymerization on segmented polyurethane using the iniferter technique’’, J. Biomed. Mater. Res. 47 (1999) 564.
    14. J. H. Kim, S. C. Kim, ‘‘PEO-grafting on PU/PS IPNs for enhanced blood compatibility-effect of pendant length and grafting density’’, Biomaterials 23 (2002) 2015.
    15. T. Okano, S.Nishiyama, I. Shinohara, T. Akaike, Y. Sakurai, ‘‘Interaction between plasma protein and microphase separated structure of copolymers’’, Polym. J. 10 (1978) 223.
    16. T. Okano, S.Nishiyama, I. Shinohara, T. Akaike, Y. Sakurai, K. Kataoka, T. Tsuruta, ‘‘Effect of hydrophilic and hydrophobic microdomains on mode of interaction between block polymer and blood platelets’’, J. Biomed. Mater. Res. 15 (1981) 393.
    17. M. Shimada, M. Miyahara, H. Tahara, I. Shinohara, T. Okano, K. Kataoka, ‘‘Synthesis of 2-hydroxyethyl methacrylate- dimethylsiloxane block copolymers and their ability to suppress blood platelet aggregation’’, Polym. J. 15 (1983) 649.
    18. T. Okano, T. Aoyagi, K. Kataoka, K. Abe, Y. Sakurai, M. Shimada, I. Shinohara, ‘‘Hydrophilic-hydrophobic microdomain surfaces having an ability to suppress platelet aggregation and their in vitro antithrombogenicity’’, J. Biomed. Mater. Res. 20 (1986) 919.
    19. J. Hirsh, T. E. Warkentin, S. G. Shaughnessy, S. S. Anand, J. L. Halperin, R. Raschke, C. Granger, E. M. Ohman, J. E. Dalen, ‘‘Heparin and low-molecular-weight heparin: mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety’’ Chest. 119 (2001) 64.
    20. D. K. Han, K. D. Park, K. D. Ahn, S. Y. Eong, Y. H. Kim, ‘‘Preparation and surface characterization of PEO-grafted and heparin-immobilized polyurethane’’, J. Biomed. Mater. Res.: Applied Biomaterials 23 (1989) 87.
    21. H. Lodish, D. Baltimore, A. Berk, S. L. Zipursky, P. Matsudaira, J. Darnell, “Molecular Cell Biology”, 3 rd ed., Scientific American Books, New York, 1998.
    22. A. Magnani, R. Barbucci, L. Montanaro, C. R. Arciola, S. Lamponi, ‘‘In vitro study of blood-contacting properties and effect on bacterial adhesion of a polymeric surface with immobilized heparin and sulphated hyaluronic acid’’, J. Biomater. Sci. Polymer Edn. 11 (2000) 801.
    23. W. C. Lin, C. H. Tseng, M. C. Yang, ‘‘In-vitro hemocompatibility evaluation of a thermoplastic polyurethane membrane with surface-immobilized water-soluble chitosan and heparin’’ Macromol. Biosci. 5 (2005) 1013.
    24. Y. J. Du, J. L. Brash, G. McClung, L. R. Berry, P. Klement, K.C. Chan. ‘‘Protein adsorption on polyurethane catheters modified with a novel antithrombin-heparin covalent complex’’, J. Biomed. Mater. Res. 80A (2007) 216.
    25. A. Chan, L. Berry, H. O’Brodovich, P. Klement, L. Mitchell, B. Baranowski, P. Monagle, M. Andrew, ‘‘Covalent antithrombin- heparin complexes with high anticoagulant activity’’, J. Biol. Chem. 272 (1997) 22111.
    26. S. Srinivasan, C. B. Burrowes, T. Lucas, S. B. Bauer, P. N. Sawyer, ‘‘Effect of varying electrolyte concentration on in vitro streaming potentials across canine aorta and carotid arteries’’, J. Biomed. Mater. Res. 1 (1967) 355.
    27. J. H. Lee, G. Khang, J. W. Lee, H. B. Lee. ‘‘Platelet adhesion on to chargeable functional group gradient surfaces’’, J. Biomed. Mater. Res. 40 (1998) 180.
    28. Y. H. Kim, D. K. Han, K. D. Park, S. H. Kim, ‘‘Enhanced blood compatibility of polymers grafted by sulfonated PEO via a negative cilia concept’’, Biomaterials 24 (2003) 2213.
    29. J. P. Santerr, P. Hove, N. H. Vanderkamp, J. L. Brash, ‘‘Effect of sulfonation of segmented polyurethanes on the transient adsorption of fibrigen from plasma: Possible correlation with anticoagulant behavior’’, J. Biome. Mater. Res. 26 (1992) 39.
    30. S. Alibeik, H. Sheardown, A. S. Rizkalla, K. Mequanint, ‘‘Protein adsorption and platelet adhesion onto ion-containing polyurethanes’’, J. Biomater. Sci. Polymer Edn. 18 (2007) 1195.
    31. M. Temtem, T. Casimiro, J. F. Mano, A. Aguiar-Ricardo, ‘‘Preparation of membranes with polysulfone-polycaprolactone blends using a high pressure cell specially designed for a CO2-assisted phase inversion’’, J. Supercrit. Fluids 43 (2008) 542.
    32. K. Gross, L. Lorenzo, ‘‘Biodegradable composite scaffolds with an interconnected spherical network for bone tissue engineering’’, Biomaterials 25 (2004) 4955.
    33. A. Baji, S. C. Wong, T. S. Srivatsan, G. Njus, G. Mathur, ‘‘Processing methodologies for polycaprolactone-hydroxyapatite composites-a review’’, Mater. Manu. Proc. 20 (2006) 211.
    34. M. C. Serrano, R. Pagani, M. Vallet-Regí, J. Peña, A. Rámila, I. Izquierdo, M.T. Portolés, ‘‘In vitro biocompatibility assessment of poly(ε-caprolactone) films using L929 mouse fibroblasts’’, Biomaterials 25 (2004) 5603.
    35. C. Li, S. Ke, Q. P. Wu, W. Tansey, N. Hunter, L. M. Buchmiller, L. Milas, C. Charnsangavej, S. Wallace, ‘‘Tumor irradiation enhances the tumor-specific distribution of poly(L-glutamic acid)-conjugated paclitaxel and its antitumor efficacy’’, Clin. Cancer Res. 6 (2000) 2829.
    36. Y. Otani, Y. Tabata, Y. Ikada, ‘‘Sealing effect of rapidly curable gelatin-poly (L-glutamic acid) hydrogel glue on lung air leak’’, Ann. Thorac. Surg. 67 (1999) 922.
    37. W. C. Lin, D. G. Yu, M. C. Yang, ‘‘Blood compatibility of novel poly(γ-glutamic acid)/polyvinyl alcohol hydrogels’’, Coll. Surf. B: Biointerf. 47 (2006) 43.
    38. I. L. Shih, Y. T. Van, ‘‘The production of poly-(γ-glutamic acid) from microorganisms and its various applications’’, Biores. Tech. 79 (2001) 207.
    39. C. Y. Hsieh, S. P. Tsai, D. M. Wang, Y. N. Chang, H. J. Hsieh, ‘‘Preparation of γ-PGA/chitosan composite tissue engineering matrices’’, Biomaterials 26 (2005) 5617.
    40. W. C. Lin, D. G. Yu, M. C. Yang, ‘‘Blood compatibility of novel poly(γ-glutamic acid)/polyvinyl alcohol hydrogels’’, Coll. Surf. B : Biointer. 47 (2006) 43.
    41. P. A. Gunatillake, G. F. Meijs, E. Rizzardo, R. C. Chatelier, S. J. McCarthy, A. Brandwood, K. Schindhelm, ‘‘Polyurethane elastomers based on novel polyether macrodiols and MDI: Synthesis, mechanical properties, and resistance to hydrolysis and oxidation’’, J. Appli. Polym. Sci. 46 (1992) 319.
    42. T. P. Gnanarajan, N. P. Iyer, A. S. Nasar, G. Radhakrishnan, ‘‘Synthesis and dissociation of amine-blocked diisocyanates and polyurethane prepolymers’’, Polym. Int. 51 (2002) 195.
    43. G. H. Ho, T. I. Ho, K. H. Hsieh, Y. C. Su, P. Y. Lin, J. Yang, K. H. Yang, S. C. Yang, ‘‘γ-Polyglutamic acid produced by Bacillus subtilis (natto): structural characteristics, chemical properties and biological functionalities’’, J. Chin. Chem. Soc. 53 (2006) 1363.
    44. V. W. Srichatrapimuk, S. L. Cooper, ‘‘Infrared thermal analysis of polyurethane block polymers’’, J. Macro. Sci.-Phys. B15 (1978) 267.
    45. S. Sartori, A. Rechichi, G. Vozzi, M. D’Acunto, E. Heine,P. Giusti, G. Ciardelli, ‘‘Surface modification of a synthetic polyurethane by plasma glow discharge-preparation and characterization of bioactive monolayers’’, React. Funct. Polym. 68 (2008) 809.
    46. W. J. Jia, C. B. Liu, L. Yang, J. L. Yang, L. Y. Fan, M. J. Huang, H. Zhang, G. T. Chao, Z. Y. Qian, B. Kan, A. L. Huang, K. Lei, C. Y. Gong, J. Zhao, J. M. Zhang, H. X. Deng, M. J. Tu, Y. Q. Wei, ‘‘Synthesis, characterization, and thermal properties of biodegradable polyetheresteramide-based polyurethane’’, Mater. Lett. 60 (2006) 3686.
    47. M. S. Yen, H. C. Tsai, P. D. Hong, ‘‘Effect of soft segment composition on the physical properties of nonionic aqueous polyurethane containing side chain PEGME’’, J. Appl. Polym. Sci. 105 (2007) 1391.
    48. D. Chen, H. Chen, J. Bei , S. Wang, ‘‘Morphology and biodegradation of microspheres of polyester-polyether block copolymer based on polycaprolactone/polylactide/poly(ethylene oxide)’’, Polym. Int. 49 (2000) 269.
    49. Y. W. Tang, R. S. Labow, I. Revenko, J. P. Santerre, ‘‘Influence of surface morphology and chemistry on the enzyme catalyzed biodegradation of polycarbonate-urethanes’’, J. Biomater. Sci. Polymer Edn. 13 (2002) 463.
    50. J. Li, M. Ding, Q. Fu, H. Tan, X. Xie, Y. Zhong, ‘‘A novel strategy to graft RGD peptide on biomaterials surfaces for endothelization of small- diamater vascular grafts and tissue engineering blood vessel’’, J. Mater. Sci: Mater. Med. 19 (2008) 2595.
    51. S. Gupta, P. Uhlmann, M. Agrawal, V. Lesnyak, N. Gaponik, F. Simon, M. Stamm, A. Eychmüller, ‘‘Covalent immobilization of quantum dots on macroscopic surfaces using poly(acrylic acid) brushes’’, J. Mater. Chem. 18 (2008) 214.
    52. G. B. Wang, R. S. Labow, J. P. Santerre, ‘‘Probing the surface chemistry of a hydrated segmented polyurethane and a comparison with its dry surface chemical structure’’, Macromolecules 33 (2000) 7321.
    53. H. L. Khor, K. W. Ng, J. T. Schantz, T. T. Phan, T. C. Lim, S. H. Teoh, D. W. Hutmacher, ‘‘Poly(γ-caprolactone) films as a potential substrate for tissue engineering an epidermal equivalent’’, Mater. Sci. Eng. C 20 (2002) 71.
    54. K. Y. Chen, J. F. Kuo, C. Y. Chen, ‘‘Synthesis, characterization and platelet adhesion studies of novel ion-containing aliphatic polyurethane’’, Biomaterials 21 (2000) 161.

    下載圖示 校內:2013-08-04公開
    校外:2013-08-04公開
    QR CODE