| 研究生: |
謝偉成 Hsieh, Wei-Cheng |
|---|---|
| 論文名稱: |
以11-氫硫基十一烷酸與 3-氫硫丙基三甲氧基矽烷修飾之超順磁性鐵氧奈米粒子之標靶製備與鑑定 Preparation and identification on the targeting of the superparamagnetic iron oxide nanoparticles modified by 11-mercaptoundecanoic acid and 3-mercaptopropyltrimethoxysilane. |
| 指導教授: |
許梅娟
Syu, Mei-Jywan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 磁性奈米粒子 、3-氫硫丙基三甲氧基矽烷 、11-氫硫基十一烷酸 、運鐵蛋白 |
| 外文關鍵詞: | magnetic nanoparticles, 3-mercaptopropyltrimethoxysilane, 11-mercaptoundecanoic acid, transferrin |
| 相關次數: | 點閱:100 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的進步,奈米材料的研究發展非常迅速,其中磁性奈米粒子已廣泛運用在生物醫學的領域上。由於磁性奈米粒子所具有的超順磁特性,可以利用外加磁場加以控制作為藥物標靶或藥物輸送的載體,藉由具靶向性的蛋白,精準的將藥物送至病灶所在的位置,以此控制病情或達到治療的效果,在生物醫學上相當具有研究價值。
本研究以水相共沉澱法 (co-precipitation) 製備磁性奈米粒子,並在其外以 3-氫硫丙基三甲氧基矽烷 (3-mercaptopropyltrimethoxysilane, MPTMS) 修飾,接著以 11-氫硫基十一烷酸 (11-mercaptoundecanoic acid, MUA) 做雙硫鍵的橋接與功能性修飾,使其外層帶有羧基,而後以運鐵蛋白 (Transferrin, Tf) 上的胺基與前者之羧基連結,作為一個具有靶向性的磁性奈米粒子載體。
以 X 光繞射儀 (XRD) 證實磁性奈米粒子為四氧化三鐵 (Fe3O4) 晶相,並推算Fe3O4, Fe3O4@MPTMA, Fe3O4@MPTMS@MUA 平均粒徑分別為 9.93, 10.18, 11.33 nm;以穿透式顯微鏡 (TEM) 在觀察粒子的表面形態後所估算的平均粒徑分別為 9.39 ± 1.47, 11.08 ± 1.38 及 13.07 ± 2.00 nm;以傅立葉轉換紅外線光譜儀 (FT-IR)、拉曼光譜儀 (Raman)、熱重分析儀 (TGA) 及能量散射光譜儀 (EDS) 確認修飾物質確實以化學鍵結包覆在磁性奈米粒子外層;以超導量子干涉儀 (SQUID) 所得之磁滯曲線得知,Fe3O4, Fe3O4@MPTMA, Fe3O4@MPTMS@MUA 的飽和磁化量分別為 83.30, 73.66 及 61.26 emu/g,且皆具有超順磁的性質,顯示包覆物會影響其飽和磁化量,但不影響其磁性質。
在生物醫療應用上,以運鐵蛋白進行連接,以紫外光/可見光光譜儀 (UV/Vis) 判斷運鐵蛋白是否連結於磁性粒子表面上,經估算後每毫克 Fe3O4@MPTMS@MUA 粒子可包覆 0.848 毫克運鐵蛋白,未來可用於攜帶藥物至有運鐵蛋白受體之細胞上。
With the improvement of technology, magnetic nanoparticles were applied in bio-medical field extensively. For the superparamagnetism it has, magnetic nanoparticles can be used as the carrier of drug targeting or drug delivery, controlled by external magnetic fields through targeted protein, and sends the medicine to the lesion accurately. Hence the illness will be controlled and the effect of the treatment will be achieved, which is worth of researching.
In this research, the magnetic nanoparticles were synthesized by co-precipitation in water phase, modified by 3-mercaptopropyltrimethoxysilane. And then modified functionally and bridged disulfide bond with 11-mercaptoundecanoic acid to cover the surface with carboxyl group. After that, the carboxyl group of the former was tied with the amino group of transferrin. Finally, a kind of magnetic nanoparticle carriers for targeting was made.
We used XRD to confirm Fe3O4 structure of magnetic nanoparticles. The average diameter of Fe3O4, Fe3O4@MPTMA, Fe3O4@MPTMS@MUA were estimated to be 9.39 ± 1.47, 11.08 ± 1.38 and 13.07 ± 2.00 nm. We confirmed that the surface of magnetic nanoparticles was coated with the modifications in the form of chemical bonds, through FT-IR, Raman, TGA and EDS. SQUID results indicated that the saturation magnetization of Fe3O4, Fe3O4@MPTMA, Fe3O4@MPTMS@MUA were 83.30, 73.66 and 61.26 emu/g respectively, and with superparamagnetism on them. And it showed that coating would change the magnetization without changing its magnetic properties.
For bio-medical application, whether the transferrin was tied on the surface of magnetic nanoparticles was detected by UV/Vis. It was estimated that Fe3O4@MPTMS@MUA each milligram can be coated with 0.848 mg transferrin, which was expected to be used to carry medicine to cells with the receptor of transferrin.
1. A.H. Lu, E.L. Salabas, F. Schueth, Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angewandte Chemie International Edition. 46(8), 1222-1244, 2007.
2. L.J. Zhao, H. Yang, Y.M. Cui, X.P. Zhao, S.H. Feng, Study of preparation and magnetic properties of silica-coated cobalt-ferrite nanocomposites. Journal of Materials Science. 42(11), 4110–4114, 2007.
3. S.P. Gubin, Y.A. Koksharov, G.B. Khomutov, G.Y. Yurkov, Magnetic nanoparticles: preparation methods, structure and properties. Uspekhi Khimii. 74(6), 539–574, 2005.
4. S.K. Sahoo, V. Labhasetwar, Nanotech approaches to delivery and imaging drug. Drug Discovery Today. 8(24), 1112–1120, 2003.
5. B.R. Frieden, B.H. Soffer, de Broglie's wave hypothesis from Fisher information. Physica A Statistical Mechanics ans its Applications. 388(7), 1315–1330, 2009.
6. S. Ferlay, T. Mallah, R. Ouahes, P. Veillet, M. Verdaguer, A room-temperature organo- metallic magnet based on prussian blue. Nature. 378(6558), 701–703, 1995.
7. T. Castro, R. Reifenberger, E. Choi, R.P. Andres, Size-dependent melting temperature of individual nanometer-sized metalic clusters. Physical Review B. 42(13), 8548–8556, 1990.
8. 蔡信行,孫光中,奈米科技導論-基本原理及應用。新文京開發出版股份有限公司,台灣,2005.
9. C.W. Chen, Magnetism and metallurgy of soft magnetic materials. New York, Dover Publications Inc., USA, 1977.
10. D.L. LesliePelecky, R.D. Rieke, Magnetic properties of nanostructured materials. Chemistry of Materials. 8(8), 1770–1783, 1996.
11. U. Schwertmann, J. Friedl, H. Stanjek, From Fe(III) ions to ferrihydrite and then to hematite. Journal of Colloid and Interface Science. 209(1), 215–223, 1999.
12. J.S. Bradley, B. Tesche, W. Busser, M. Masse, R.T. Reetz, Surface spectroscopic study of the stabilization mechanism for shape-selectively synthesized nanostructured transition metal colloids. Journal of the American Chemical Society. 122(19), 4631–4636, 2000.
13. R.P. Blakemore, R.B. Frankel, Magnetic navigation in bacteria. Scientific American. 245(6), 58–65, 1981.
14. J.B. Moussy, From epitaxial growth of ferrite thin films to spin-polarized tunnelling. Journal of Physics D Applied Physics. 46(14), 143001, 2013.
15. M.F. Tweedle, Physiochemical properties of gadoteridol and other magnetic- resonance contrast agents. Investigative Radiology. 27, S2–S6, 1992.
16. M.A. Perazella, Tissue deposition of gadolinium and development of NSF: A convergence of factors. Seminars in Dialysis. 21(2), 150–154, 2008.
17. K.W. Huang, J.J. Chieh, I.T. Lin, H.W. Horng, H.C. Yang, C.Y. Hong, Anti-CEA- functionalized superparamagnetic iron oxide nanoparticles for examining colorectal tumors in vivo. Nanoscale Research Letters. 8(1), 413–420, 2013.
18. E.S. Jang, S.J. Ho, G. Ren, P.M. Jin, K. Cheng, X.Y. Chen, The manipulation of natural killer cells to target tumor sites using magnetic nanoparticles. Biomaterials. 33(22), 5584–5592, 2012.
19. M. Morteza, S. Sant, B. Wang, S. Laurent, T. Sen, Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Advanced Drug Delivery Reviews. 63(1), 24–46, 2011.
20. M. Kresse, S. Wagner, D. Pfefferer, R. Lawaczeck, V. Elste, W. Semmler, Targeting of ultrasmall superparamagnetic iron oxide (USPIO) particles to tumor cells in vivo by using transferrin receptor pathways. Magnetic Resonance in Medicine. 40(2), 236–242, 1998.
21. W. Zhou, N.Yao, G.P. Yao, C.H. Deng, X.M. Zhang, P.Y. Yang, Facile synthesis of aminophenylboronic acid-functionalized magnetic nanoparticles for selective separation of glycopeptides and glycoproteins. Chemical Communications. 43, 5577–5579, 2008.
22. A. Jordan, P. Wust, H. Fahling, W. John, A. Hinz, R. Felix, Inductive heating of ferrimagnetic particles and magnetic fluids – physical evaluation of their potential for hyperthermia. International Journal of Hyperthermia. 9(1), 51–68, 1993.
23. C. Antonio, C. Giverso, R. Pande, S. Sarangi, L.Preziosi, J. Wosik, et al., Design maps for the hyperthermic treatment of tumors with superparamagnetic nanoparticles. Plos One. 8(2), e57332, 2013.
24. S.J. Park, S. Kim, S. Lee, Z.G. Khim, K. Char, T. Hyeon, Synthesis and magnetic studies of uniform iron nanorods and nanospheres. Journal of the American Chemical Society. 122(35), 8581–8582, 2000.
25. V.F. Puntes, K.M. Krishnan, A.P. Alivisatos, Colloidal nanocrystal shape and size control: the case of cobalt. Science. 291(5511), 2115–2117, 2001.
26. S. Neveu, A. Bee, M. Robineau, D. Talbot, Size-selective chemical synthesis of tartrate stabilized cobalt ferrite ionic magnetic fluid. Journal of Colloid and Interface Science. 255(2), 293–298, 2002.
27. S.H. Sun, H. Zeng, Size-controlled synthesis of magnetite nanoparticles. Journal of the American Chemical Society. 124(28), 8204-8205, 2002.
28. Q. Chen, A.J. Rondinone, B.C. Chakoumakos, Z.J. Zhang, Synthesis of superpara- magnetic MgFe2O4 nanoparticles by coprecipitation. Journal of Magnetism and Magnetic Materials. 194(1-3), 1–7, 1999.
29. J. Park, K.J. An, Y.S. Hwang, J.G. Park, H.J. Noh, J.Y. Kim, et al., Ultra-large-scale syntheses of monodisperse nanocrystals. Nature Materials. 3(12), 891895, 2004.
30. S.H. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science. 287(5460), 1989–1992, 2000.
31. E.V. Shevchenko, D.V. Talapin, A.L. Rogach, A. Kornowski, M. Haase, H. Weller, Colloidal synthesis and self-assembly of CoPt3 nanocrystals. Journal of the American Chemical Society. 124(38), 11480–11485, 2002.
32. T. Prozorov, S.K. Mallapragada, B. Narasimhan, L.J. Wang, Pierre Palo, M.N. Hamilton, et al., Protein-mediated synthesis of uniform superparamagnetic magnetite nanocrystals. Advanced Functional Materials. 17(6), 951–957, 2007.
33. A.A. Bharde, R.Y. Parikh, M. Baidakova, S. Jouen, B. Hannoyer, T. Enoki, et al., Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles. Langmuir. 24(11), 5787–5794, 2008.
34. G.W. Reimers, S.E. Khalafalla, Production of magnetic fluids by peptization techniques, US. Patent, 3843, 540, 1972.
35. D.L. Massart, L. Kaufman, D. Coomans, K.H. Esbensen, The classification of iron-meteorites – a reappraisal of existing classification. Bulletin Des Societes Chimiques Belges. 90(4), 281–288, 1981.
36. 洪碩延,具標靶性之環糊精包覆磁性奈米顆粒之鑑定與其熱效應及裝載辣椒鹼之探討,成功大學化學工程研究所碩士論文,2010
37. A.K. Gupta, A. S.G. Curtis, Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. Journal of Materials Science-Materials in Medicine. 15(4), 493-496, 2004.
38. J.W. Lee, T. Isobe, M. Senna, Magnetic properties of ultrafine magnetite particles and their slurries prepared via in-situ precipitation. Colloids and Surfaces A Physicochemical and Engineering Aspects. 109, 121–127, 1996.
39. D.K. Kim, Y. Zhang, W. Voit, K.V. Rao, M. Muhammed, Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials. 225(1-2), 30–36, 2001.
40. S.H. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, et al., Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. Journal of the American Chemical Society. 126(1), 273–279, 2004.
41. K. Woo, J. Hong, S. Choi, H.W. Lee, J. P. Ahn, C.S. Kim, et al., Easy synthesis and magnetic properties of iron oxide nanoparticles. Chemistry of Materials. 16(14), 2814–2818, 2004.
42. N.R. Jana, Y.F. Chen, X.G. Peng, Size and shape controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chemistry of Materials. 16(20), 3931–3935, 2004.
43. A.C.S. Samia, K. Hyzer, J.A. Schlueter, C.J. Qin, J.S. Jiang, S.D. Bader, et al., Ligand effect on the growth and the digestion of conanocrystals. Journal of the American Chemical Society. 127(12), 4126–4127, 2005.
44. L. Yang, M. Afzaal, P. O'Brien, The synthesis of amine-capped magnetic (Fe, Mn, Co, Ni) oxide nanocrystals and their surface modification for aqueous dispersibility. Journal of Materials Chemistry. 16(22), 2175–2180, 2006.
45. T. Hyeon, S.S. Lee, J. Park, Y. Chung, H.B. Na, Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. Journal of the American Chemical Society. 123(51), 12798–12801, 2001.
46. F.Y. Zhao, B.L. Zhang, L.Y. Feng, Preparation and magnetic properties of magnetite nanoparticles. Materials Letters. 68, 112–114, 2012.
47. X. Wang, J. Zhuang, Q. Peng, Y.D. Li, A general strategy for nanocrystal synthesis. Nature. 437(7055), 121–124, 2005.
48. R. Fan, X.H. Chen, Z. Gui, L. Liu, Z.Y. Chen, A new simple hydrothermal preparation of nanocrystalline magnetite Fe3O4. Materials Research Bulletin. 36(3-4), 497–502, 2001.
49. Y.B. Khollam, S.R. Dhage, H S. Potdar, S.B. Deshpande, P.P. Bakare, S.S. Kulkarni, et al., Microwave hydrothermal preparation of submicron-sized spherical magnetite (Fe3O4) powders. Materials Letters. 56(4), 571–577, 2002.
50. P.A. Winsor, Hydrotropy solubilisation and related emulsification processes. Transactions of the Faraday Society. 44(6), 376–398, 1948.
51. N. Yang, H.M. Zhang, M.J. Wang, Q. Hao, H.Z. Sun, Iron and bismuth bound human serum transferrin reveals a partially-opened conformation in the N-lobe. Scientific Reports. 2, No.999, 2012
52. S. Gropper, J. Smith, Advanced nutrition and human metabolism, Ed. 6, Wadsworth, USA, 2012
53. R.L. Elliott, J.F. Head, Cancer: tumor iron metabolism, Mitochondrial dysfunction and tumor immunosuppression. Journal of Cancer Therapy. 3, 278–311, 2012
54. 吳麗萍,製備包覆運鐵蛋白–環糊精之磁性奈米粒子及其熱效應與負載釋放 capsaicin 之探討,成功大學化學工程研究所碩士論文,2012
55. R. Kircheis, L. Wightman, A. Schreiber, B. Robitza, V. Rossler, M. Kursa, E. Wagner, Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Therapy. 8(1), 28–40, 2001
56. M. Fritzer, T. Szekeres, V. Szuts, H.N. Jarayam, H. Goldenberg, Cytotoxic effects of a doxorubicin-transferrin conjugate in multidrug-resistant KB cells. Biochemical Pharmacology. 51(4), 489–493, 1996
57. O. Damink, L.H. Dijkstra, P.J. Luyn, M.J. Wachem, P.B. Van, P. Nieuwenhuis, J. Feijen, Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials. 17, 765–773. 1996
58. R.I. Krohn, The colorimetric detection and quantitation of total protein. Current Protocols in Cell Biology. A3(H), 1–28, 2011
校內:2024-12-31公開