研究生: |
李羿賢 Li, Yi-Sian |
---|---|
論文名稱: |
流動性瀝青混凝土(Guss)的介電性質分析 Dielectric Properties of Guss Asphalt |
指導教授: |
張介民
Chang, Chieh-Min 陳建旭 Chen, Jian-shiuh |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 204 |
中文關鍵詞: | 電磁式密度儀 、非破壞性檢測 、介電常數 、流動性瀝青混凝土 、密度 、Guss |
外文關鍵詞: | Nonnuclear pavement density gauge, Guss asphalt, Dielectric constant, Density, Non-destructive measurement |
相關次數: | 點閱:66 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對鋪築於鋼鈑橋之流動性瀝青混凝土(Guss)進行鑽心試驗將會造成鋼鈑橋橋面損壞,以及留下侵害之弱面,須以非破壞性檢測方法,進行鋪面密度品質控制。以電磁波原理應用於非破壞性檢測過程中,介電常數為影響電磁波行為之重要參數,本研究使用網路分析儀搭配終端開路同軸探棒(Open-Ended Coaxial Probe),量測Guss膠漿,粒料,和Guss試體之介電常數,以2.55GHz頻率之介電常數數值探討孔隙率,密度,瀝青含量,以及溫度變化對於介電常數之影響。另發展Guss瀝青混凝土介電混合模型與介電常數預測密度模型,並且使用電磁式密度儀PaveTracker量測Guss瀝青混凝土密度,並以校正後之PaveTracker數值與實驗室密度加以比較。
試驗結果顯示孔隙率和密度與介電常數呈線性關係,R2約為0.6。對於Guss試體而言,瀝青含量對介電常數影響並不明顯。在溫度量測範圍90℃至60℃的降溫過程當中,Guss試體介電常數隨溫度下降而減少。另由本研究所發展的Guss試體介電混合模型,以膠漿,粒料,石粉和空氣之介電常數及所佔之體積百分比,可推測Guss試體之介電常數。並且由所建立之密度預測模型,以Guss試體介電常數預測密度,密度預測值與實驗室密度之相關性R2為0.78。最後以校正電磁式密度儀PaveTracker讀數,校正後PaveTracker讀數與實驗室密度之相關係數R從0.38提升到0.89,為可接受之數值。
For the quality of pavement density, the core test of Guss asphalt on an orthotropic steel deck bridge would damage the deck, and the location after that test would be a weakness for erosion, so need to use a non-destructive pavement density measurement. The process of non-destructive methods by an electromagnetic way, the dielectric constant is one of the most important parameters to influence behavior of an electromagnetic way. This study measured the dielectric properties of Guss mastic, aggregate, and Guss asphalt specimens by network analyzer and an open-ended coaxial probe, and discussed the relationship between the dielectric constant and air void, density, bitumen content, and temperature at 2.55GHz frequency range. Then this study established the dielectric mixing model and the density predicting model, and furthermore measured density of Guss asphalt specimens by the nonnuclear pavement density gauge PaveTacker, then the PaveTacker value after calibration was compared with measured value.
The results showed linear relationship between air void and the dielectric constant, density and the dielectric constant, and R2 was about 0.6. The influence of bitumen content on the dielectric constant was not significant. In temperature range, the dielectric constant of Guss asphalt specimens decreased with the cooling of temperature in 90C to 60C. As for the dielectric mixing model of Guss asphalt, the dielectric constant value of the specimens was calculated by the dielectric constant and volume fraction of Guss mastic, aggregate, pulverized limestone, and air. And for the density predicting model of Guss asphalt, the density value of Guss asphalt was calculated by the dielectric constant value, R2 of the regression of the density value by calculating of the density value by measured was 0.78. Moreover, this study calibrated the nonnuclear pavement density gauge PaveTacker value, and R of the regression of the PaveTracker value after calibration of the density value by measured was raised 0.89 from 0.38.
中華瀝青鋪面工程學會 (2007),Guss瀝青混凝土,桃園。
龔中麟、徐承和 (1996) 近代電磁理論,凡異出版社,新竹。
國立成功大學土木系(2009),國道六號南投段第C606A標國姓高架橋工程-熱鑄膠泥瀝青混凝土配合設計,台南。
陳建旭、張介民、方建程 (2006),發展瀝青混凝土離溪之檢測準則,國立成功大學土木工程所碩士論文,台南。
陳建旭、張介民、吳資彬 (2008),瀝青混凝土介電性質與工程性質之關係,國立成功大學土木工程所碩士論文,台南。
Agilent Technologies (2005). Basics of Measuring the Dielectric Properties of Materials, Application Note, Agilent Literature Number 5989-2589EN, USA.
Buyukozturk, O. (1997). “Electromagnetic Properties of Concrete and Their Significance in Nondestructive Testing,” Transportation Research Record 1574 , pp.10-17.
Dbson, M.C., Ulaby, F.T., Hallikainen, M.T., and El-Rayes M.a. (1985). “Microwave Dielectric Behavior of Wet Soil – Part 2 : Dielectric Mixing Models,” IEEE Transactions on Geoscience and Remote Sensing, Vol. Ge-23, No.1, pp.35-46.
Evans, R., Frost, M., Stonecliffe-Jones, M., and Dixon, N. (2007). “Assessment of The In-Situ Dielectric Constant of Pavement Materials,” 87th Transportation Research Board Annual Meeting, Washington, D.C., (on CD-ROM).
Fraőhlich, H. (1949). Theory of Dielectrics: Dielectric Constant and Dielectric Loss, Clarendon Press, Oxford.
Griffiths, D.J. (1999). Introduction to Electrodynamics (3rd ed.), Prentice Hall International, Upper Saddler River, NJ.
Hallkainen, M.T., Ulaby, F.T., Dobson, M.C., El-Rayes, M.A., and Wu, L. (1985). ”Microwave Dielectric Behavior of Wet Soil – Part 1:Empirical Models and Experimental Observations,” IEEE Transactions on Geoscience and Remote Sensing, Vol. Ge-32, No.1, pp.25-34.
Hippel, A., ed. (1957). Dielectric Materials and Applications, M.I.T. Press and Wiley, New York.
Holwech, I., and Nost, B. (1989). ‘‘Dielectric dispersion measurements of salt-water saturated porous glass.’’ Phys. Rev. B: Condensed Matter, Vol.39, No.17, pp.12845-12852.
Jaselskis, E., J., Grigas, J., and Algirdas, B., (2003). “Dielectric Properties of Asphalt Pavement,” Journal of Materials in Civil Engineering, Vol.15, No.5, pp.427-434.
Kingery, W.D., Bowen, H.K., and Uhlmann, D. R. (1976). Introduction to Ceramics, John Wiley and Sons, New York.
Kenyon, W. E. (1984). “Texture effects on megahertz dielectric properties of calcite rock samples,” J. Appl. Phys., Vol.55, No.8, pp. 3153-3159.
Kraszewski, A. (1997). Microwave Aquametry. IEEE, Piscataway, N.J.
Nelson, S.O. (2004). “Dielectric Properties and Density Relationships for Granualr Materials,” An ASAE/CSAE Meeting Presentation, Paper Number: 046088.
Nelson, S.O., and Bartley, P.G. (1998). “Open-Ended Coaxial-Line Permittivity Measurements on Pulverized Mateials,” IEEE Transactions on Instrumentation and Measurement, Vol.47, No.1, pp.133-137
Remoero, P., and Kuhnow, F. (2003). “Evaluation of New Nonnuclear Pavement Density Gauges with Data from Field Projects,” Transportation Research Record 1813, TRB, National Research Council, Washington, D.C, pp.47-54.
Saarenketo, T., (1997). “Using Ground-Penetrating Radar and Dielectric Probe Measurements in Pavement Density Quality Control,” Transportation Research Record 1575, pp.34-41.
Saarenketo, T., “Measuring Electromagnetic Properties of Asphalt for Pavement Quality Control and Defect Mapping.” http://vgwww.vegagerdin.is/nvf33.nsf/0/6423655ed26a5bd400256de90031ecaf/$FILE/Asphalt_electromagnetics_TimoS_030603.pdf, viewed 29 May 2008.
Shang, J. Q., Rowe, R. K., Umana, J. A., and Scholte, J. W. (1999a).‘‘A Complex permittivity measurement system for undisturbed/compacted soils,’’ Geotechnical Testing Journal, Vol.22, No.2, pp.165-174.
Shang, J.Q., and Umana, J.A. (1999). ”Dielectric Constant and Relaxation Time of Asphalt Pavement Materials,” Journal of Infrastructure System, Vol.5, No.4, pp.135-142.
Sihvola, A.H., and Kong, J.A. (1988). “Effective Permittivity of Dielectric Mixtures,” IEEE Transactions on Geoscience and Remote Sensing, Vol.26, No.4, pp.420-429.
Ulaby, F.T., Bengal, T.H., Dobson, M.C., East, J.R., Garvin, J.B., and Evans, D.L. (1990). “Micowave Dielectric Properties of Dry Rocks,” IEEE Transactions on Geoscience and Remote Sensing, Vol.28, No.3, pp.325-336.
Venkatesh, M.S. and Raghavan, G.S.V. (2005).”An Overview of Dielectric Properties Measuring Techniques,” Canadian Biosystems Engineering, Vol.47, pp.7.15-7.30.