| 研究生: |
陳坤隆 Chen, Kun-Lung |
|---|---|
| 論文名稱: |
含1-單取代Imidazole潛含性觸媒在環氧樹脂材料膠化之研究開發 Investigation of the 1-Substituted Imidazole Derivatives as Thermal Latent Catalysts in the Crue of Epoxy Resins |
| 指導教授: |
葉茂榮
Yeh, Mou-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系碩士在職專班 Department of Chemistry (on the job class) |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 潛含性觸媒 、咪唑 、環氧樹脂 |
| 外文關鍵詞: | Latnt catalysts, Epoxy resin, Imidazole |
| 相關次數: | 點閱:87 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般在封裝材料中常使用的觸媒,可分成imidazole系列、diazabicyclic系列 (DBU 和 DBN)和phenolic系列,或將不同系列的觸媒加以掺混,上述觸媒皆可使封裝材料得到良好的高分子材料物性,由於封裝材料屬於活性化合物 (B-stage compound),更由於上述觸媒反應性太強,造成封裝材料儲存及運送過程不易,須在較低溫條件下操作,因此,開發新型之潛含性觸媒,為業界所迫切之需求。
要成為潛含性觸媒所需具備有三個條件,一、在封裝過程溫度(100–175 oC)下能快速硬化。二、可使封裝材料無限期儲存壽命。三、對封裝材料不會有負面性質影響。目前所研發的潛含性觸媒,可分為熱裂解型(thermal latent catalysts)和陽離子型 (cationic latent catalysts) 。一般而言,純熱裂解型(thermal latent catalysts),被研究開發之分子種類較少,也較不易得到良好聚合物性。因此,文獻發表,以陽離子型 (cationic latent catalysts)居多,但陽離子型潛含性觸媒常與counterion (如BF4-, PF6-, AsF6-和SbF6-)來結合,以穩定潛含性觸媒。但進行聚合反應時,將釋放出其他酸性物種(如HBF4, HPF6, HAsF6 和 HSbF6)而危害電子線路。
因此,本論文主要是研究開發含有imidazole之潛含性觸媒,因imidazole具強催化性質,當分子裂解時,可釋放出imidazole分子,以得到良好聚合效果和物性,而裂解剩下之部份,亦為可參與高分子聚合反應之材料,不至殘留影響電子線路。新型含imidazole的潛含性觸媒,在室溫皆能安定存在,使封裝材料之儲存期限得以延長,當在高溫封裝壓模時,潛含性觸媒則因在高溫下不穩定,裂解進行催化反應,以達到聚合硬化之效果。
Three Types of catalysts were usually applied in the molding compound of electronic industries which contain a series of imidazole, diazabicyclic derivatives (DBU and DBU) and phenolic compounds. Sometimes, the mixture compounds of diazabicyclic derivatives and phenolic compounds also were applied in the manufacture production. Due to the strong reactivity of these catalysts, the molding compounds must be storage at low temperature to prolong the pot-life. As a result, the latent catalysts have attracted much attention to maintain the long pot-life and improve the physical properties.
A perfect latent catalyst for molding compound should have the following properties: (1) rapid cure at a moderately elevated temperature (100–175 oC), (2) indefinite storage life for the catalyzed resin, and (3) no adverse effect on the properties of the cured material. Two types of latent catalysts were investigated: one was the thermal catalyst and another was the cationic latent catalyst. A few of pure thermal latent catalysts were developed and reported in the recent research because the poor catalyzed reactivity. Most of cationic latent catalysts were published in recent year which the reactivity of cationic latent catalysts were enhanced by the nucleophilicity of couterion (BF4-, PF6-, AsF6- and SbF6-). When the acidic species (HBF4, HPF6, HAsF6 and HSbF6) would be released while the cruing polymerization. The acidic species would be damaged the electronic products.
In this dissertation, we focus to develop a series of 1-substituted imidazole derivatives catalysts which would be degraded in the molding temperature (100–175 oC) and released imidazole moiety to catalyze the polymerization. According to the imidazole catalysts are extensively utilized in the curing epoxy resins in the molding compounds to provide the good physical and mechanical properties. These designed 1-substituted catalysts are very stable at room temperature and prolong the pot-life of molding compounds.
Buchanan, R. C. In Ceramic materials for electronics; M. Dekker: New York, 1986.
Harper, C. A. In Electronic packaging and interconnection handbook, McGraw-Hill: New York, 1997.
Ginsberg, G. In Electronic equipment packaging technology; Van Nostrand Reinhold: New York, 1992.
Goosey, M. T. In Plastics for electronics; Kluwer Academic Publishers: Dordrecht, 1999.
Godovsky, Y. K. In Speciality polymers/polymer physics; Springer Verlag: Berlin, 1989.
Wong, C. P. In Polymers for electronic and photonic applications, Academic Press: Boston, 1993.
Kimura, H.; Matsumoto, A.; Hasegawa, K.; Ohtsuka, K.; Fukuda, A. J. Appl. Polym. Sci. 1998, 68, 1903.
Kim, Y. C.; Park, S. J.; Lee, J. R. Polym. J. 1997, 29, 759.
Park, S. J.; Kang, J. G.; Kwon, S. H. Maromol Mater Eng. 2004, 289, 413.
Lee, J. K.; Choi, Y. Marcromolecular Reserch. 2002, 10, 34.
Park, S. J.; Kim, T. J.; Lee, J. K. J Appl Polym Sci B: Polym Phys. 2000, 38, 2114.
Hale, A.; Macosko, C.W.; Bair, H. E. J Appl Polym Sci. 1989, 38, 1253.
Farkas, A.; Strohm, P.F. J Appl Polym Sci. 1968, 12, 159.
Wang, S.; Wong, C.P. 1999 International Symposium on Advanced Packagig Materials. 1999, 67.
Sharma, G. V. M.; Reddy, J. J.; Lakshmi, P. S.; Krishna, P. R. Tetrahedron Letters. 2004, 45, 6963.
Henry, R. A.; Dehn, W. M. J. Am. Chem. Soc. 1949, 71, 2297.
Davis, D. P.; Kirk, K. L.; Cohen, L. A. J. Heterocyclic. Chem. 1982, 19, 253.
Hanson, J. R. In Protecting Groups in Organic Synthesis, Sheffield Academic Press: Sheffield England, 1999.
Murata, S. Chem. Lett. 1983, 1819.
Kondratiev, V. N. In Bond Dissociation Energies, Inonization Potentials and Electron Affinities, Mauka Publishing House: Moscow, 1974.
Urdahl, R. S.; Bao, Y.; Jackson, W. M. Chem. Phys. Lett. 1991, 178, 425.
Briganti, F.; Pierattelli, R.; Scozzafava, A.; Supuran, C. T. Eur. J. Med. Chem. 1996, 31, 1001.
Coquart, B.; Prodhomme, J. C. J. Mol. Spectrosc. 1981. 87, 75.
Gingerich, K. A. J. Phys. Chem. 1969, 73, 2734.
Mccallum, J. S.; Liebeskind, L. S. Synthesis 1993, 819.
Greene, T. W.; Wuts, P. G. M. In Protective groups in organic synthesis; Wiley: New York, 1991.
Sloan, K. B.; Koch, S. A. M. J. Org. Chem. 1983, 48. 635.
Kwak, G. H.; Park, S. J.; Lee, J. R. J. Appl. Polym. Sci. 2001, 81, 646.
Park, S. J.; Seo, M. K.; Lee, J. R.; Lee, D. R. J. Polym. Sci. A: Polym. Chem. 2001, 39, 187.
Kissinger, H. E. Anal. Chem. 1957, 29, 1702.
Park, S. J.; Seo, M. K.; Lee, J. R.; Lee, D. R. J. Polym. Sci. A: Polym. Chem. 2001, 39, 187.
Kissinger, H. E. Anal. Chem. 1957, 29, 1702.
Tung. C. M.; Dynes, P. J. J. Appl. Polym. Sci. 1982, 27, 569.
Galego, N.; Gonzàlez, F. Polymer International. 1996, 40, 213.
Park, S. J.; Kim, T. J.; Kim, H. Y. Polymer international. 2002, 51, 386.
校內:2010-07-27公開