| 研究生: |
陳癸杏 Chen, Kuei-Hsing |
|---|---|
| 論文名稱: |
以空載光達資料判釋微地形特徵及深層滑動之關聯分析 The Linkage Analysis of Deep Seated Landslide to the Micro Geomorphology Characters Derived from Airborne LiDAR |
| 指導教授: |
余騰鐸
Yu, Teng-To |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 深層滑動 、光達 、微地形特徵 、五彎仔 、判釋 |
| 外文關鍵詞: | Deep Seated Landslide, LiDAR, Micro Geomorphology Character, Woo Wan Chai, Interpretation |
| 相關次數: | 點閱:107 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣受地震與強降雨所造成的地質災害頻傳,2009 年造成小林村滅村的莫拉克風災、1998 年因921 地震造成草嶺和九份二山大崩塌,以及林肯大郡的崩塌皆是受到地震或降雨促崩導致的深層滑動。
深層滑動為深度大於3 公尺之塊體滑動,屬於長時間、大範圍的活動,事先並不容易預測。目前已有研究證明大規模崩塌在破壞前會有細微的地形特徵產生,如裂隙、崩崖等。光達為新興的測繪技術,可快速地進行大範圍、高精度的掃描,其雷射光束能穿透樹層到達地面,目前已廣泛被應用於製作高精度的DEM 或DSM。
本研究即以具深層滑動的台18 線阿里山公路之五彎仔地區為測試區域,利用空載光達點雲製作DEM 並進行分析,另外以DSM、航拍影像套疊、比對來判釋可能的地形特徵線,再進行現場調查,驗證其關聯性。最後,透過研究整合判釋結果推估五彎仔滑動體的崩塌趨勢,提出以空載光達判釋之特徵線與深層滑動之關聯性並討論其適用性。五彎仔地區當地面點雲密度大於1 pts/m2 時,以空載光達產製1m × 1m DEM 並進行相關分析與圖層套疊、比對,可判釋出尺度大於0.5m × 12 m 之微地形特徵線。利用室內判釋與現場調查結果結合前人研究及監測資料,可知五彎仔崩塌上緣侵蝕速率平均每年約往東11 公尺,推估若於崩塌上緣約10 公尺距離內發現綿延長達數十公尺之特徵線時,極有可能在未來一年左右產生新的破壞。
Due to the climate change, geological hazards triggered by earthquake or rainfall are increased recently in Taiwan. Deep seated landslide is concerned with a slide surface deeper than 3 m. There are several large scale deep seated landslide cases in Taiwan, such as the Hsiaolin village destroyed by Typhoon Morakot in 2009, the Tsaolin and Jiu‐fen‐er Mountain Landslides caused by Chi‐chi earthquake in 1999. Several studies have noted that the precursors of deep seated landslide are micro geomorphology characters (scarps, cracks, etc.) resulted from the associating mass deformation. However, these characters are too small to be interpreted from the aerial or satellite photographs.
Airborne laser scanning, an up‐to‐date measurement technique, could cover a large area quickly and the data acquired have high level of accuracy. It has been widely employed to generate high precision DEM or DSM for various applications.
The aim of this study is to ascertain whether using LiDAR‐derived DEM would help to improve the interpretation of the micro geomorphology to the identification of the precursor from deep seated landslide. The LiDAR data was collected at Woo Wan Chai, which is a deep seated landslide region at Alishan, Southern Taiwan. The interpretation was carried out with LiDAR‐derived DEM, DSM and aerial photography. For verifying the feasibility, in‐situ investigation was conducted to examine the interpretation in the laboratory. Results of this study shown the linkage of micro geomorphology characters derived by LiDAR DEM to the deep seated landslide is highly related, and the distribution of the characters was consistent to the local historical events. In the region with no less than 1 pts/m2 ground LiDAR point, this method is applicable to interpret the micro geomorphology characters if it is larger than 0.5m × 12 m based on 1m × 1 m LiDAR‐derived DEM. In addition, these results implied that the failure plane may occur about a year at the micro geomorphology characters while they appear continuously within approximately 10m from the scarp for this particular example case.
Agliardi, F., Crosta, G., & Zanchi, A. (2001). Structural constraints on deep-seated slope deformation kinematics. Engineering Geology, 59(1–2), 83-102. doi: 10.1016/s0013-7952(00)00066-1
Agliardi, F., Crosta, G. B., Zanchi, A., & Ravazzi, C. (2009). Onset and timing of deep-seated gravitational slope deformations in the eastern Alps, Italy. Geomorphology, 103(1), 113-129. doi: 10.1016/j.geomorph.2007.09.015
Baltsavias, E. P. (1999). Airborne laser scanning: basic relations and formulas. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2–3), 199-214. doi: 10.1016/s0924-2716(99)00015-5
Chigira, M. (2009). September 2005 rain-induced catastrophic rockslides on slopes affected by deep-seated gravitational deformations, Kyushu, southern Japan. Engineering Geology, 108(1-2), 1-15. doi: 10.1016/j.enggeo.2009.03.005
Chigira, M. (2011). Geological and Geomorphological Characteristics of Deep-Seated Catastrophic Landslides Induced by Rain and Earthquakes. Journal of Chinese Soil and Water Conservation, 42(4), 3-16.
Chigira, M., Duan, F., Yagi, H., & Furuya, T. (2004). Using an airborne laser scanner for the identification of shallow landslides and susceptibility assessment in an area of ignimbrite overlain by permeable pyroclastics. Landslides, 1(3), 203-209. doi: 10.1007/s10346-004-0029-x
Chigira, M., & Kiho, K. (1994). Deep-seated rockslide-avalanches preceded by mass rock creep of sedimentary rocks in the Akaishi Mountains, central Japan. Engineering Geology, 38(3–4), 221-230. doi: 10.1016/0013-7952(94)90039-6
Chigira, M., Wang, W.-N., Furuya, T., & Kamai, T. (2003). Geological causes and geomorphological precursors of the Tsaoling landslide triggered by the 1999 Chi-Chi earthquake, Taiwan. Engineering Geology, 68(3–4), 259-273. doi: 10.1016/s0013-7952(02)00232-6
Chigira, M., Wu, X., Inokuchi, T., & Wang, G. (2010). Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China. Geomorphology, 118(3–4), 225-238. doi: 10.1016/j.geomorph.2010.01.003
Chigira, M., & Yagi, H. (2006). Geological and geomorphological characteristics of landslides triggered by the 2004 Mid Niigta prefecture earthquake in Japan. Engineering Geology, 82(4), 202-221. doi: 10.1016/j.enggeo.2005.10.006
Dewitte, O., Jasselette, J. C., Cornet, Y., Van Den Eeckhaut, M., Collignon, A., Poesen, J., et al. (2008). Tracking landslide displacements by multi-temporal DTMs: A combined aerial stereophotogrammetric and LIDAR approach in western Belgium. Engineering Geology, 99(1–2), 11-22. doi: 10.1016/j.enggeo.2008.02.006
Dramis, F., & Sorriso-Valvo, M. (1994). Deep-seated gravitational slope deformations, related landslides and tectonics. Engineering Geology, 38(3–4), 231-243. doi: 10.1016/0013-7952(94)90040-x
Glenn, N. F., Streutker, D. R., Chadwick, D. J., Thackray, G. D., & Dorsch, S. J. (2006). Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology, 73(1-2), 131-148. doi: 10.1016/j.geomorph.2005.07.006
Gold, R. D. (2003). A comparative study of aerial photographs and LiDAR imagery for landslide detection in the Puget Lowland, Washington. Whitman College.
Gutiérrez-Santolalla, F., Acosta, E., Ríos, S., Guerrero, J., & Lucha, P. (2005). Geomorphology and geochronology of sackung features (uphill-facing scarps) in the Central Spanish Pyrenees. Geomorphology, 69(1–4), 298-314. doi: 10.1016/j.geomorph.2005.01.012
Koukis, G., & Ziourkas, C. (1991). Slope instability phenomena in Greece: A statistical analysis. Bulletin of Engineering Geology and the Environment, 43(1), 47-60.
Kuo, C. Y., Tai, Y. C., Bouchut, F., Mangeney, A., Pelanti, M., Chen, R. F., et al. (2009). Simulation of Tsaoling landslide, Taiwan, based on Saint Venant equations over general topography. Engineering Geology, 104(3–4), 181-189. doi: 10.1016/j.enggeo.2008.10.003
Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2008). Remote sensing and image interpretation (6th ed.). Hoboken, NJ: John Wiley & Sons.
Morin, K. W. (2002). Calibration of airborne laser scanners. University of Calgary, Calgary, Canada.
Renslow, M. S. (2001). Development of a bare ground DEM and canopy layer in NW forestlands using high performance LIDAR.
Soininen, A. (2011). Terrascan user’s guide Terrasolid. Finland.
Stini, J. (1941). Unsere Täler wachsen zu. Geologie und Bauwesen, 13(3), 71-79.
Varnes, D. J. (1978). Slope movement types and processes. Transportation Research Board Special Report(176).
Ventura, G., Vilardo, G., Terranova, C., & Sessa, E. B. (2011). Tracking and evolution of complex active landslides by multi-temporal airborne LiDAR data: The Montaguto landslide (Southern Italy). Remote Sensing of Environment, 115(12), 3237-3248. doi: 10.1016/j.rse.2011.07.007
Wehr, A., & Lohr, U. (1999). Airborne laser scanning—an introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2–3), 68-82. doi: 10.1016/s0924-2716(99)00011-8
Wu, J.-H., & Chen, C.-H. (2011). Application of DDA to simulate characteristics of the Tsaoling landslide. Computers and Geotechnics, 38(5), 741-750. doi: 10.1016/j.compgeo.2011.04.003
王俞芳. (2011). 比對數值高程模型時間變化值與重疊點雲於地表變形偵測之精確度分析. 碩士, 國立成功大學, 台南市. 取自 Airiti GCScholar database.
王晉倫, 蕭國鑫, 游明芳, 陳大科, 劉進金. (2005). 空載 LiDAR 資料應用於地形變化偵測. Paper presented at the 內政部辦理 LIDAR 測區之高精度及高解析度數值地形測繪,資料庫建置與應用推廣工作案成果發表暨應用研討會.
田村圭司, 内田太郎, 鈴木隆司, 寺田秀樹, 栗原淳一. (2008). 深層崩壊の発生の恐れのある渓流抽出マニュアル(案). 土木研究所資料(4115).
何春蓀. (1991). 普通地質學 (三版). 臺北市: 五南圖書出版有限公司.
余威論. (2011). 速度-位移相關摩擦係數與巨型山崩運動特性. 碩士, 國立中央大學, 桃園縣. 取自 http://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dnclcdr&s=id=%22099NCU05503047%22.&searchmode=basic
李三畏. (1984). 臺灣崩坍問題探討. 地工技術(7期), 頁43-49.
林慶偉. (2012). 利用光達地形資料剝除地表植生外衣 發現地質災害真面貌, 經濟部中央地質調查所新聞資料.
金聖鴻. (2010). 邊坡潛變行為監測與數值模擬. 碩士, 雲林科技大學, 雲林縣. 取自 http://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dnclcdr&s=id=%22098YUNT5582026%22.&searchmode=basic
洪如江, & 林美聆. (2000). 九二一集集大地震後續短期研究: 草嶺大崩山之後續研究: 國家地震工程研究中心.
陳圓. (2009). 台18線五彎仔段崩塌區滑動潛勢評估. 碩士, 逢甲大學, 台中市. 取自 http://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dnclcdr&s=id=%22097FCU05015012%22.&searchmode=basic
陳樹群. (2010). 土砂災害與深層崩塌機制探討.
陳樹群, 吳俊鋐. (2009). 高雄縣小林村獻肚山巨型深層崩塌引致之地形變遷特性. 中華水土保持學報, 40(4), 359-376.
曾義星, 王驥魁. (2012). 100年度發展先進空載光達科技與應用工作案 工作報告書: 財團法人研究發展基金會.
渡正亮. (1971). 地すべりの型と対策. 地すべり, 8(1), 1-5.
楊樹榮, 林忠志, 鄭錦桐, 潘國樑, 蔡如君, 李正利. (2011). 臺灣常用山崩分類系統. 論文發表於 第十四屆大地工程學術研究討論會, 桃園, 台灣.
經濟部. (2010). 中華民國台灣水文年報 臺北巿: 經濟部水資源統一規劃委員會.
劉治中, 蕭國鑫, 饒見有, 劉進金, 吳哲榮, 黃群修. (2010). 結合空載LiDAR與彩色航照應用於崩塌地研判. [Integrating Airborne LiDAR and Color Aerial Photography for Landslide Interpretation]. 航測及遙測學刊, 15(1), 111-122.
劉進金, 翁勳政, 黃金鴻, 楊明宗. (2001). 豪雨型崩塌地之遙測影像分析. 論文發表於 21 世紀土木工程技術與管理研討會論文集.
潘國樑. (2006). 遙測學大綱 : 遙測概念、原理與影像判釋技術 (初版). 臺北市: 科技圖書出版 : 成陽發行.
潘國樑. (2007). 山坡地的地質分析與有效防災 (初版). 臺北市: 科技圖書出版 : 展智發行.
蔡宗成. (2006). 台18線五灣仔地滑研究. 碩士, 國立成功大學, 台南市. 取自 http://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dnclcdr&s=id=%22094NCKU5015011%22.&searchmode=basic