研究生: |
謝逸璇 Hsieh, Yi-Hsuan |
---|---|
論文名稱: |
B型肝炎病毒的突變表面抗原引起氧化壓力以及基因體的不穩定 Oxidative stress and genomic instabilities caused by the HBV pre-S mutant surface antigens |
指導教授: |
黃溫雅
Huang, Wen-Ya |
學位類別: |
碩士 Master |
系所名稱: |
醫學院 - 醫事技術學系 Department of Medical Technology |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 英文 |
論文頁數: | 77 |
中文關鍵詞: | 氧化壓力 、B型肝炎病毒表面抗原 、B型肝炎病毒 |
外文關鍵詞: | HBV, HBsAg, oxidative strss |
相關次數: | 點閱:85 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
B型肝炎病毒為部分雙股的DNA病毒,慢性B型肝炎患者罹患肝癌的機率是正常人的100倍以上。B型肝炎病毒含有三種形式的表面抗原,全長的表面抗原基因包含pre-S1、pre-S2及S區域 (region),大型表面抗原是由表面抗原基因的第一個起始碼 (start codon) 所轉譯出來的,包含pre-S1、pre-S2及S;中型表面抗原是由表面抗原基因的第二個起始碼 (start codon) 開始轉譯出來的,包含pre-S2及S;小型表面抗原是由表面抗原基因的第三個起始碼 (start codon) 開始轉譯出來的,僅含有S部分。pre-S的刪除型突變 (deletion mutant)導致這些突變型抗原累積在肝細胞的內質網中,形成毛玻璃狀肝細胞(ground glass hepatocytes;GGH),並引發強烈的內質網壓力。我們的實驗目標就是去探討pre-S突變型的表面抗原是否引發基因體的不穩定性。我們利用H2DCF (2’7’-dichlorofluorescein diacetate) 染色及彗星分析 (comet assay) 證實了當細胞存有pre-S突變型的表面抗原時,引發較高量的反應性氧化物質 (reactive oxygen species;ROS) 和氧化性的DNA損傷,即是8-oxoguanine的量在基因體中明顯的增加許多。而這些氧化性的DNA損傷也活化了DNA修復系統中的鹼基切除修復途徑 (base excision repair)。另外在隨機基因突變試驗 (random gene mutation assay) 中發現pre-S突變型的表面抗原引發的基因突變率較wild-type的表面抗原基因高。另外pre-S2 mutant的轉殖基因老鼠中發現疑似有p53突變 (p53 muatant) 發生,而DNA repair基因8-oxoguanine glycosylase (OGG1) 也受刺激而上升 (up regulation)。我們更進一步利用臨床上因受HBV感染而引發肝癌 (HBV related HCC) 的病人肝臟組織,利用雷射捕獲顯微分離技術 (LCM) 將表現GGH type II的肝細胞收集下來,並進行RT-PCR觀察OGG1之表現量,結果發現OGG1的表現量也受到刺激而上升 (up regulation)。這表示著這些HCC病人的肝臟細胞中持續存在氧化性的DNA損傷 (oxidative DNA damage),而這些氧化性的DNA損傷引發基因體的不穩定,因此可能與癌症的發生有關。
Hepatitis B virus (HBV) is a small DNA virus with partially double-stranded genome. Chronic HBV infection have a greater than 100-fold increased relative risk of developing the tumor. There are three forms of the HBV surface protein. The large form is translated from the first ATG of the ORF; while the middle and small forms are translated from downstream in-frame ATG codons. The pre-S deletion mutants of HBS antigen accumulated in hepatocytes reveal ground-glass hepatocytes (GGH), which are often seen in patients with chronic HBV infection. Accumulation of this mutant protein in endoplasmic reticulum (ER) induces an oxidative stress. We aimed to study the potential genomic instabilities caused by the pre-S mutant HBS antigen. By the DCFH-DA stainings as well as the comet assays, the Huh-7 cells over-expressing the pre-S mutant HBS antigens exhibited higher levels of reactive oxygen species (ROS) and oxidative DNA lesion 8-oxoguanine. These oxidative DNA damages have significantly stimulated the base excision repair (BER) activity in cells. In addition, the assays of random gene mutation frequencies using hprt gene as a marker have found that the pre-S mutant HBS antigens induce higher mutation rates as compared with the wild-type large HBS antigen does. In the transgenic mice of the pre-S2 HBS antigen, we observed that the tumor suppressor gene p53 was mutated and the DNA repair gene 8-oxoguanine glycosylase (OGG1) was up-regulated. The OGG1 gene was also induced in the hepatic tissues harvested by laser capture microdissection in the HCC patients, indicating that the oxidative DNA damages occur in the HCC cells with chronic HBV infection. These oxidative DNA damages probably induce genomic instability, which potentially lead to hepatocellular carcinogenesis.
Ames BN, Shigenaga MK and Gold LS, 1993. DNA lesions, inducible DNA repair, and cell division: Three key factors in mutagenesis and carcinogenesis. Environ. Health. Perspect. 93: 35-44.
Angela RE, Melissa LF and Mark RK, 2000. Going APE over ref-1. Mut. Res. 461: 83-108.
Amanda KM, Dodson ML and Lloyd RS, 1999. Initiation of base excision repair: glycosylase mechanisms and structures. Annu. Rev. Biochem. 68: 255-285.
Buendia MA, 1994. Etiological and progression factors. Primary liver cancer. p.211-224. CRC press, Paris
Bréchot C, Hadchouel J, Scotto M, Fonck F, Potet G and Tiollais P, 1981. State of hepatitis B virus DNA in hepatocytes ofpatients with HBsAg positive and HBsAg negative liver diseases. Proc Natl Acad. Sci. USA. 78: 3906-3910.
Bréchot C, Hadchouel J, Scotto M, Degos F, charnay P, Trepo C and Tiollais P. 1981. Detection on hepatitis B virus DNA in liver and serum: a direct appraisal of the chronic carrier state. Lancet. 765-768.
Blumberg BS, Gerstley BSJ, Hungerford DA, London WT and Sutnick AJ, 1967. A Serum Antigen (Australia Antigen) in Down's Syndrome, Leukemia and Hepatitis. Annals of Internal Medicine; 66: 924-931.
Beasley RP: Hepatitis B virus. The major etiology of hepatocellular carcinoma, 1988. Cancer, 61: 1942-1956.
Bessho T, Roy R, amamoto K, asai H, ishimura S, Tano K and Mitra S, 1993. Repair of 8-hydroxyguanine in DNA by mammalian N-methylpurine-DNA glycosylase. Proc. Natl. Acad. Sci.USA. 90: 8901-8904.
Butterworth BE, 1991. Chemically induced cell proliferation as a predictive assay for potential carcinogenicity. Progress in Clin. Biol. Res. 369:457-467.
Cohen SM and Ellwein LB, 1991. Genetic errors, cell proliferation, and carcinogenesis. Cancer Res., 51: 6493-6505.
Chu CM and Liaw YF, 1987. Intrahepatic distributin of hepatitis B surface and core antigens in chronic hepatitis B virus infection . Hepatocyte with cytoplasmic/membranous hepatitis B core antigen as a possible target for immune hepatocytolysis. Hepatology, 8: 749-754.
Chu CM, kareyiannis P, Fowler MJF, Maujardino J, Liaw YF and Thomas HC, 1985. Natural history of choric hepatitis B virus infection in Taiwan: Studies of hepatitis B virus DNA in serum. Hepatology. 5:431-434.
Chu CM, Liaw YF, Sheen IS and Chen TJ, 1985. Correlation of the age with the status of hepatitis B virus replication and histological changes in chronic type B hepatitis. Liver, 5:117-122.
Chen DS, 1993. From hepatitis to hepatoma: Lessons form type B viral hepatitis. Science, 262: 369-370.
Cleaver JE, 1968. Defective repair replication of DNA in xeroderma pigmentosum. Nature, 218:652-656.
Cleaver JE, 1969. Xeroderma pigmentosum: a human disease in which an initial stage of DNA repair is defective. Proc. Natl. Acad. Sci. USA. 63: 428-435.
Chisari FV, Filippi P, McLachlan A, Milich DR, Riggs M, Lee S, Palmiter RD, Pinkert CA and Brinster RL, 1986. Expression of hepatitis B virus large envelope polypeptide inhibits hepatitis B surface antigen secretion in transgenic mice. J. Virol. 60: 880-887.
Chris JN and Ian DH, 2001. Cellular responses to DNA damage. Annu. Rev. Pharmacol. Toxicl. 41: 367-401.
Dienes HP, Gerlich WH, Worsdorfer M, Gerken G, Bianchi L, Hess G and buschenfelde KHMZ, 1990. Hepatic expression patterns of the large and middle hepatitis B virus surface proteins in viremic and nonviremic chronic hepatitis B. Gastroenterology, 98:1017-1023.
Fan YF, Lu CC, Chen WC, Ywo WJ, Wang HC, Chang TT, Lei HY, Shiau, AL and Su IJ, 2001. Prevalence and significance of hepatitis B virus pre-S mutants in serum and liver at different replicative stages of chronic HBV infection. Hepatology, 33: 277-286.
Fan YF, Lu CC, Chang YC, Chang TT, Lin PW, Lei HY and Su IJ, 2000. Identification of a pre-S2 mutant in hepatocytes expressing a noel marginal pattern of surface antigen in advanced disease of chronic hepatitis B virus infection. J. Gastroenterology Hepatology, 15: 519-528.
Fourel G. Trepo C. Bougueleret L. Henglein B. Ponzetto A. Tiollais P. Buendia MA, 1990. Frequent activation of N-myc genes by hepadnavirus insertion in wlldchuck liver tumours. Nature, 347: 294-298.
Ganem D, 1991. Assembly of hepadnaviral virions andsubviral particles. Curr. Top. Microbiol. Immunol. 168: 61-83.
Gerber MAS, Hadziyannis C, Vissoulis F, Schaffner F, Paronetto and Popper H, 1974. Electron microscopy and immunoelectron
microscopy of cytoplasmic hepatitis B antigen in hepatocytes. Am. J. Pathol. 75: 589-502.
Gerber MA and Thung SN, 1985. Molicular and cellular pathology of hepatitis B. Lab. Invest. 52: 572-590.
Govindarajan S, Fong TL, Valinluck B, Edwards V and Redeker AG. 1988. Markers of viral replication in patients with chronic hepatitis B virus infection. Am. F. Clin. Pathol. 89: 233-237.
Guido Drosina, 2000. Overexpression of enxymes that repair endogenous damage to DNA. Eur. J. Biochem. 267: 2135-2149.
Huang ZM and Yen TSB, 1993. Dysregulated surface gene expression from disrupted hepatitis B virus genomes. J. Virol. 67:7032-7040.
Krokan HE, Nilsen H, Skorpen F, Otterlei M and Slupphaug G, 2000. Base excision repair of DNA in mammalian cells. FEBS letters. 476: 73-77.
Hsia CC, Axiotis CA, Di bisceglie AM and Tabor E. 1992. Tansforming growth factor-alpha in human hepatocellular carcinoma and coexpression with hepatitis B surface antigen in adjacent liver. Cancer, 70: 1049-1056.
Hodges NJ and Chipman JK, 2002. Down-regulation of the DNA-repair endonuclease 8-oxo-guanine DNA glycosylase 1 (hOGG1) by sodium dichromate in cultured human A549 lung carcinoma cells. Carcinogenesis, 23(1):55-60.
Hadzyannis SJ, Lieberman HM, Karvountzis GG, Shafritz DA, 1983. Analysis of liver disease, nuclear HBsAg, viral replication, and hepatitis B virus DNA, in liver and serum of HBeAg Vs. anti-HBe positive carriers of hepatitis B virus. Hepatology, 3: 656-662.
Hansen LJ. Tennant BC. Seeger C and Ganem D, 1993. Differential activation of myc gene family members in hepatic carcinogenesis by closely relaged hepatitis B viruses. Mol. Cell. Biol. 12: 659-667.
Huang SN and Chisari FV, 1995. Strong, sustained hepatocellular proliferation precedes hepatocarcinoenesis in hepatitis B surface antigen transgenic mice. Hepatology, 21:620-626.
Jan H J, Heijmarders, 2001. Genome maintenance mechanisms for preventing cancer. Nature, 411: 366-374.
Kam W, Rall LB, Smuckler EA, Scmid R and Rutter WJ, 1982. Hepatitis B viral DNA in liver and serum of asymptomatic carriers. Proc. Natl. acad. Sci. USA. 79: 7522-26.
Karachristos A. et al. 1999. Microsatellite instability and p53 mutantions in hepatocellular carcinoma. Mol. Cell Biol. Res. Commun. 2: 155-161.
Liu H, Bowes RC 3rd, van de Water B, Sillence C, Nagelkerke JF and Stevens JL, 1997. Endoplasmic reticulum chaperones GRP78 and calreticulin prevent oxidative stress, Ca2+ disturbances, and cell death in renal epithelial cells. J. Biol. Chem. 272: 21751-21759.
Dodson ML and Lloyd RS, 2001. Backbone dynamics of DNA containing 8-oxoguanine: importance for substrate recognition by base excision repair hlycosylases. Mut. Res. 487: 93-108.
Molnar-Kimber KL, Jarocki-Witek V, Dheer SK, Vernon SK, Conley AJ, Davis AR and Hung PP, 1988. Distinctive properties of hepatitis B virus envelope proteins. J. Virol. 62: 407-416.
Melegari M, Scaglioni PP and Wands JR, 1997. The small envelope protein is required for secretion of a naturally occurring hepatitis B virus mutant with pre-S1 deleted. J. Virol. 71: 5449-5454.
Melegari M, Bruno S and Wands JR, 1994. Properties of gepatitis b virus pre-S1 deletion mutants. Virol. 199: 292-300.
Nandan Bhattacharyya and Sipra Banerjee, 2001. A novel role of XRCC1 in the functions of a DNA polymerase variant. Biochem. 10: 9005-9013.
Nassal M and Schaller H, 1996. Hepatitis B virus replication. Journal of Viral Hepatitis, 3:217-26.
Okochi K and Murakami S, 1968. Observations on Australia Antigen in Japanese. Vox Sang. 15: 374-385.
Pontisso P, Ruvoletto MG, Gerlich WH, Heermann KH, Bardini R and Alberti A, 1989. Identification of an attachment site for human liver plasma membranes on hepatitis B virus particles. Virol. 173: 522-530.
Wood RD, Mitchell M, Sgouros J and Lindahl T, 2001. Human DNA repair gene. Sciene, 291:1284-1289.
Robinson WS and Greenman RL, 1974. DNA polymerase in the core of the human hepatitis B Virus candidate. J. Virol. 13: 1231-1236.
Su IJ, Lai MY, Hsu HC, Chen DS, Yang PM, Chuang SM and Sung JL, 1986. Diverse virological, hitopathological and prognostic implications and seroconversion from hepatitis B e antigen to anti-HBe in chronic hepatitis b virus infection. J. Hepatol. 3: 182-189.
Su IJ, Kuo TT and Liaw YF, 1985. Hepatocyte hepatitis B surface antigen: Diagnostic evaluation of patients with clinically acute hepatitis B surface antignen-positive hepatitis. Arch. Pathol. Lab. Med. 109: 400-402.
Thorgeirsson SS and Grisham JW, 2002. Molecular pathogenesis of human hepatocellular carcinoma. Nature, Gene. 31: 339-346.
Shafritz DA, Shouval D, Sherman HI, Hadziyannis SJ and Kew MC, 1981. Integration of hepatitis B virus DNA into the genome of liver cells in chronic liver disease and hepatocellular carcinoma. New Engl. J. Med. 305: 1067-1073.
Schirmacher P, Schwub D and Dienes HP, 1996. Intracellular accumulation of incompletely processed transforming growth factor-alpha polypeptides in ground glass hepatocytes of chronic hepatitis b virus infection. J. Hepatol. 24: 547-554.
Sancar A and Tang M, 1993. Nucleotide excision repair. Photochemistry & Photobiology. 57:905-921.
Serbinova E, Kadiiska MB, Bakalova RA, Koynova GM, Stoyanovsky DA, Karakashev PC, Stoytchev TS, Wolinsky I and Kagan VE, 1989. Lipid peroxidation activation and cytochrome P-450 decrease in rat liver endoplasmic reticulum under oxidative stress. Toxicol. Lett. 47: 119-123.
Satoh MS and Lindahl T, 1994. Enzymatic repair of oxidative DNA damage. Cancer Res. 54: 1899-1901.
Schaff Z, Hsua CC, Sarosi I and Tabor E, 1994. Overexpression of transforming growth factor-alpha in hepatocellular carcinoma and focal nodular hyperplasic from European patients. Hum Pathol. 25: 644-651.
Seifer M, Hohne M, Schaefer S and Gerlich WS, 1992. In vitro Tumorigenicity of Hepatitis B Virus DNA and HBx Protein. J Hepatology, 13 (suppl. 4): S61-S65.
Thung SN, Gerber MA, Kasambalides EJ, Gilja BK, Keh W and Gerlich WH, 1986. Demonstration of pre-S polypeptides of hepatitis b virus in infected livers. Hepatology, 6: 1315-1318.
Wee A, Yap I and guan R, 1991. Hepatocyte hepatitis B surface antigen expression in chronic hepatitis B hepatitis B virus carriers in Singapore: correlation with viral replication and liver pathology. J. Gastroenterol. Hepatol. 6: 466-470.
Wang HC, Wu HC, Chen CF, Lei HY and Su IJ, 2003. Different types of ground glass hepatocytes in chronic hepatitis B virus infection contain specific pre-S mutants which may induce ER stress and oxidative response. In submission
Wikman H, Risch A, Klimek F, Schmezer P, Spiegelhalder B, Dienemann H, Kayser K, Schulz V, Drings P and Bartsch H, 2000. hOGG1 polymorphism and loss of heterozygosity (LOH): significance for lung cancer susceptibility in a caucasian population. Int. J. of Cancer. 88(6):932-937.
Wang HD, Trivedi A, and Johnson DL, 1997. Hepatitis B Virus X Protein Induces RNA Polymerase III-Dependent Gene Transcription and Increases Cellular TATA-Binding Protein by Activating the Ras Signalling Pathway. Mol. Cell. Biol. 17(12): 6838-6846.
Wang, XZ, Lawson, B, Brewer, JW, Zinszner, H, Sanjay, A, Mi, LJ, Boorstein, R, Kreibich, G, Hendershot, LM and Ron, D, 1996. Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Mol. Cell. Biol., 16(8), 4273-80.
Xu Z and Yen TS, 1996. Intracellular retention of surface protein by a hepatitis B viruses mutant that releases virion particles. J. virol. 70: 133-140.
Xu Z, Jensen G and Yen TSB, 1997. Activation of hepatitis B virus S promoter by viral large surface protein via induction stress in the endoplasmic reticulum. J. Virol. 71: 7387-7392.
Xu Z, Bruss V and Yen TS, 1997. Formation of intracellular particles by hepatitis B virus large surface protein. J. Virol. 71: 5487-5494.
Yahinuma K, Kobayashi H, Kobayashi M, Morishima T, Matsuyama K and Koike K, 1987. Multiple integration site of hepatitis B virus DNA in hepatocellular carcinoma and chronic active hepatitis tissues from children. J .Virol. 61: 1801-1813.
Yasui H, Hino O, Ohtake K, Machinami R and Kitagawa T, 1992. Clonal growth of hepatitis B virus integrated hepatocytes in cirrhotic liver nodules. Cancer Res. 52: 6810-6814.
Yeh SH, Chen PJ, Shau WY, Chen YW, Lee PH, Chen JT, and Chen DS, 2002. Chromosomal allelic imbalance evolving from liver cirrhosis to hepatocellular carcinoma. Gastroenterology. In press.
Yu Z, Luo H, Fu W, Mattson MP, 1999. The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: suppression of oxidative stress and stabilization of calcium homeostasis. Expl Neurol. 155: 302-314.
Kubota Y, Nash RA, Klungland A, Schar P, Barnes DE and Lindahl T, 1996. Reconstitution of DNA base excision repair with purified human proteins: interaction between DNA polymerase β and the XRCC1 protein. EMBO. 15:6662-6670.