簡易檢索 / 詳目顯示

研究生: 謝君儀
Hsieh, Chun-I
論文名稱: 以直流磁控濺鍍法製作P型氧化錫薄膜電晶體及其應用
Investigation of P-type Tin Oxide Thin Film Transistors Fabricated by DC Sputtering System and Its Applications
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 75
中文關鍵詞: P型薄膜電晶體氧化錫
外文關鍵詞: P-type thin film transistor, SnO
相關次數: 點閱:64下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用直流磁控濺鍍法沉積氧化錫薄膜,並討論在不同製程條件下薄膜的特性,接著將這些薄膜作為主動層應用於薄膜電晶體,並進行分析及討論其特性。
    首先以直流濺鍍的方式在不同氧流量及不同退火時間溫度的製程條件下沉積薄膜,並且從幾個方向去討論氧化錫薄膜特性,分別是薄膜光學特性、薄膜結構特性及薄膜表面/縱深分析。在光學特性的部分,實驗顯示薄膜在可見光區有50%–80%的穿透率,而轉換成吸收光譜計算能隙的結果,能隙大約在2.55–2.93 eV。而在結構特性上,氧化錫薄膜使用直流濺鍍的方式長得非常緻密,而從X射線繞射分析(XRD)圖可以得知,氧流量比例5%時有明顯的P型氧化錫峰值,而氧流量比例7.5%以上薄膜則呈現非晶的結果。此外,在薄膜表面/縱深分析結果中得知,因製作時氧流量的改變可以有效地改變材料零價錫、二價錫及四價錫組成的比例,從X射線光電子能譜(XPS)圖得知,當氧流量越大時,薄膜裡的最關鍵的成分P型二價錫會大量減少。
    實驗的第二部分是使用二氧化矽做為氧化錫P型薄膜電晶體的閘極介電層,我們由第一部分的薄膜分析,確認氧含量5%時會有最佳的二價錫含量比例,並且藉由爐管退火溫度及時間的改變,來找出P型薄膜電晶體最佳參數。在室溫下得到場效電洞遷移率為0.85 cm2/V∙s,臨界電壓為−0.23 V,次臨界擺幅為−1.28 V/dec,開關電流比為2.25 × 102。

    In this thesis, tin oxide (SnO) was prepared by DC magnetron sputtering with a tin metallic target, and the film properties were discussed thoroughly under different processing ambiences. Next, the deposited SnO thin films were served as channel layer for thin film transistors (TFTs). Analyses were then carried out and discussion on the device characteristics was included.
    In the first part of the experimental results and features discussion, we utilized the DC-sputtering system to grow films under various gas mixtures. Post-annealing treatment was subsequently conducted. Film properties were investigated in detail in terms of a number of aspects which were optical, structural, and surface/depth element analyses. The optical measurement results showed that the transmittance in the visible light region could achieve 50%–80%. The corresponding energy bandgap was about 2.55–2.93 eV. From structural analysis, it was known that thin films were densely grown by sputtering. The X-ray diffraction analysis (XRD) diagram revealed that a significant P-type tin oxide peak existed as oxygen flow ratio was 5%. While the oxygen flow ratio of the film surpassed 7.5%, crystallinity of the films transformed from crystalline to amorphous state. With material element analysis, it was observed that films may exhibit different properties by varying oxygen flow ratios when sputtering. The XPS results suggested that variation of gas mixture during sputtering can significantly change the component ratio of metallic tin (Sn0), divalent tin (Sn2+) and tetravalent tin (Sn4+) in the material. The X-ray photoelectron spectroscopy (XPS) result confirmed that as the oxygen flow ratio increased the P-type divalent tin (Sn2+) in the film would be considerably reduced.
    In the second part, SnO TFTs with silica (SiO2) as the gate dielectric layer were realized. From the implemented film analyses, oxygen flow ratio of 5% was thought to hold the optimal proportion of P-type divalent tin (Sn2+) content. Manipulation of annealing time and temperature was conducted to find the optimized parameters for P-type TFT application. The SnO TFT at room temperature showed a field effect mobility of 0.85 cm2/V∙s, threshold voltage of −0.23 V, subthreshold swing of −1.28 V/dec, and on-off current ratio of 2.25 × 102.

    摘要 I 誌謝 V Contents VI Table Captions VIII Figure Captions IX Chapter 1. Introduction 1 1.1 Background and Motivation 1 1.2 Background of SnO Material 3 1.3 Organization of This Thesis 5 1.4 Reference 6 Chapter 2. Relevant Theory and Experimental Equipment 13 2.1 Theory of Thin Film Transistor 13 2.2 Important Parameters 15 2.2.1 Field-Effect Mobility 15 2.2.2 Threshold Voltage (VT) 16 2.2.3 On/off Current Ratio (Ion/Ioff) 16 2.2.4 Subthreshold Swing (SS) 16 2.3 Experimental Equipment 17 2.3.1 DC Sputtering System 17 2.3.2 X-ray Diffraction Analysis (XRD) 20 2.3.3 Atomic Force Microscopes (AFM) 22 2.3.4 Energy-Dispersive X-ray Spectroscopy (EDS) 23 2.3.5 Focused Ion Beam (FIB) 24 2.3.6 X-ray Photoelectron Spectroscopy (XPS) 26 2.3.7 Hall Effect Analyzer 27 2.3.8 Measurement Systems 29 2.4 Reference 29 Chapter 3. Characteristics of SnO Thin Film 31 3.1 Fabrication of SnO Thin Film Sample 31 3.2 Optical Characteristics 33 3.3 X-ray Diffraction (XRD) Analysis 37 3.4 X-ray Photoelectron Spectroscopy (XPS) Analysis 40 3.5 AFM & SEM Analysis 46 3.6 FIB & EDS Analysis 49 3.7 P-type Verification – PN junction 53 3.7.1 Fabrication – PN junction 53 3.7.2 Measurement – PN junction 55 3.8 Reference 57 Chapter 4. Fabrication and Characteristics of SnO Bottom Gate Thin Film Transistor 59 4.1 Background of Thin Film Transistor 59 4.2 Fabrication and Measurement of SnO Thin Film Transistor 60 4.3 The Electrical Properties of the SnO Thin Film Transistor 63 4.4 The Summary of SnO Thin Film Transistor 69 4.5 Reference 70 Chapter 5. Conclusion and Future Work 73 5.1 Conclusion 73 5.2 Future Work 75

    Chapter 1
    [1]Fortunato, E. M., Pimentel, A. C. M. B. G., Gonçalves, A. M. F., Marques, A. J. S., Pereira, L. M. N., & Martins, R. F. P. (2005). Fully Transparent ZnO Thin‐Film Transistor Produced at Room Temperature. Advanced Materials, 17(5), 590-594.
    [2]Fortunato, E., Barquinha, P., Pimentel, A., Pereira, L., Goncalves, G., & Martins, R. (2007). Amorphous IZO TTFTs with saturation mobilities exceeding 100 cm2/Vs. physica status solidi (RRL)-Rapid Research Letters, 1(1), R34-R36.
    [3]Barquinha, P., Pereira, L., Goncalves, G., Martins, R., & Fortunato, E. (2009). Toward high-performance amorphous GIZO TFTs. Journal of The Electrochemical Society, 156(3), H161-H168.
    [4]Fortunato, E. M., Pereira, L. M., Barquinha, P. M., Botelho do Rego, A. M., Gonçalves, G., Vilà, A., ... & Martins, R. F. (2008). High mobility indium free amorphous oxide thin film transistors. Applied Physics Letters, 92(22), 222103.
    [5]Gonçalves, G., Barquinha, P., Pereira, L., Franco, N., Alves, E., Martins, R., & Fortunato, E. (2010). High mobility a-IGO films produced at room temperature and their application in TFTs. Electrochemical and Solid-State Letters, 13(1), H20-H22.
    [6]Fortunato, E., Pereira, L., Barquinha, P., Ferreira, I., Prabakaran, R., Goncalves, G., ... & Martins, R. (2009). Oxide semiconductors: Order within the disorder. Philosophical Magazine, 89(28-30), 2741-2758.
    [7]Hosono, H., Kikuchi, N., Ueda, N., & Kawazoe, H. (1996). Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples. Journal of Non-Crystalline Solids, 198, 165-169.
    [8]Tang, C. W., & VanSlyke, S. A. (1987). Organic electroluminescent diodes. Applied physics letters, 51(12), 913-915.
    [9]Kawazoe, H., Yasukawa, M., Hyodo, H., Kurita, M., Yanagi, H., & Hosono, H. (1997). P-type electrical conduction in transparent thin films of CuAlO2. Nature, 389(6654), 939-942.
    [10]Kawazoe, H., Yanagi, H., Ueda, K., & Hosono, H. (2000). Transparent p-type conducting oxides: design and fabrication of pn heterojunctions. Mrs Bulletin, 25(08), 28-36.
    [11]Snure, M., & Tiwari, A. (2007). Cu BO 2: A p-type transparent oxide. Applied Physics Letters, 91(9), 092123.
    [12]Ueda, K., & Hosono, H. (2002). Band gap engineering, band edge emission, and p-type conductivity in wide-gap LaCuOS 1− x Se x oxychalcogenides. Journal of applied physics, 91(7), 4768-4770.
    [13]Hiramatsu, H., Ueda, K., Ohta, H., Hirano, M., Kamiya, T., & Hosono, H. (2003). Degenerate p-type conductivity in wide-gap LaCuOS 1− x Se x (x= 0–1) epitaxial films. Applied physics letters, 82(7), 1048-1050.
    [14]Mizoguchi, H., Kawazoe, H., & Hosono, H. (1996). Enhancement of Electrical Conductivity of Polycrystalline β-PbO by Exposure to Ozone Gas at Room Temperature. Chemistry of materials, 8(12), 2769-2773.
    [15]Hiramatsu, H., Yanagi, H., Kamiya, T., Ueda, K., Hirano, M., & Hosono, H. (2007). Crystal structures, optoelectronic properties, and electronic structures of layered oxychalcogenides M CuO Ch (M= Bi, La; Ch= S, Se, Te): effects of electronic configurations of M 3+ ions. Chemistry of Materials, 20(1), 326-334.
    [16]Park, J. S., Maeng, W. J., Kim, H. S., & Park, J. S. (2012). Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. Thin Solid Films, 520(6), 1679-1693.
    [17]Ihokura, K., & Watson, J. (1994). The Stannic Oxide Gas SensorPrinciples and Applications. CRC press.
    [18]Hara, K., Horiguchi, T., Kinoshita, T., Sayama, K., Sugihara, H., & Arakawa, H. (2000). Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells. Solar Energy Materials and Solar Cells, 64(2), 115-134.
    [19]Soares, M. R., Dionisio, P. H., Baumvol, I. J. R., & Schreiner, W. H. (1992). Influence of sputtering parameters on the composition and crystallinity of tin oxide. Thin Solid Films, 214(1), 6-16.
    [20]Pan, X. Q., & Fu, L. (2001). Oxidation and phase transitions of epitaxial tin oxide thin films on (1012) sapphire. Journal of Applied Physics, 89(11), 6048-6055.
    [21]Meijer, E. J., De Leeuw, D. M., Setayesh, S., Van Veenendaal, E., Huisman, B. H., Blom, P. W. M., ... & Klapwijk, T. M. (2003). Solution-processed ambipolar organic field-effect transistors and inverters. Nature materials, 2(10), 678-682.
    [22]Liang, L. Y., Liu, Z. M., Cao, H. T., & Pan, X. Q. (2010). Microstructural, optical, and electrical properties of SnO thin films prepared on quartz via a two-step method. ACS applied materials & interfaces, 2(4), 1060-1065.
    [23]Guo, W., Fu, L., Zhang, Y., Zhang, K., Liang, L. Y., Liu, Z. M., ... & Pan, X. Q. (2010). Microstructure, optical, and electrical properties of p-type SnO thin films. Applied Physics Letters, 96(4), 042113.
    [24]Ogo, Y., Hiramatsu, H., Nomura, K., Yanagi, H., Kamiya, T., Hirano, M., & Hosono, H. (2008). p-channel thin-film transistor using p-type oxide semiconductor, SnO. Applied Physics Letters, 93(3), 032113.
    [25]Pan, X. Q., & Fu, L. (2001). Tin oxide thin films grown on the (1012) sapphire substrate. Journal of electroceramics, 7(1), 35-46.
    [26]Fortunato, E., Barquinha, P., & Martins, R. (2012). Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances. Advanced materials, 24(22), 2945-2986.
    [27]Shimotani, H., Suzuki, H., Ueno, K., Kawasaki, M., & Iwasa, Y. (2008). p-type field-effect transistor of NiO with electric double-layer gating. Applied Physics Letters, 92(24), 242107.
    [28]Fortunato, E., Barquinha, P., & Martins, R. (2012). Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances. Advanced materials, 24(22), 2945-2986.
    [29]Caraveo-Frescas, J. A., Nayak, P. K., Al-Jawhari, H. A., Granato, D. B., Schwingenschlögl, U., & Alshareef, H. N. (2013). Record mobility in transparent p-type tin monoxide films and devices by phase engineering. ACS nano, 7(6), 5160-5167.
    [30]Kamiya, T., & Hosono, H. (2010). Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Materials, 2(1), 15-22.
    [31]Lefebvre, I., Szymanski, M. A., Olivier-Fourcade, J., & Jumas, J. C. (1998). Electronic structure of tin monochalcogenides from SnO to SnTe. Physical Review B, 58(4), 1896.
    [32] Togo, A., Oba, F., Tanaka, I., & Tatsumi, K. (2006). First-principles calculations of native defects in tin monoxide. Physical Review B, 74(19), 195128.
    [33]Yanagi, H., Kawazoe, H., Kudo, A., Yasukawa, M., & Hosono, H. (2000). Chemical design and thin film preparation of p-type conductive transparent oxides. Journal of Electroceramics, 4(2), 407-414.
    [34]Yan Liang, L., Tao Cao, H., Bo Chen, X., Min Liu, Z., Zhuge, F., Luo, H., ... & Lu, W. (2012). Ambipolar inverters using SnO thin-film transistors with balanced electron and hole mobilities. Applied Physics Letters, 100(26), 263502.
    [35]Ou, C. W., Dhananjay, Ho, Z. Y., Chuang, Y. C., Cheng, S. S., Wu, M. C., ... & Chu, C. W. (2008). Anomalous p-channel amorphous oxide transistors based on tin oxide and their complementary circuits. Applied Physics Letters, 92(12), 122113.
    [36]Lee, H. N., Kim, H. J., & Kim, C. K. (2010). P-channel tin monoxide thin film transistor fabricated by vacuum thermal evaporation. Japanese Journal of Applied Physics, 49(2R), 020202.
    [37]Yan Liang, L., Tao Cao, H., Bo Chen, X., Min Liu, Z., Zhuge, F., Luo, H., ... & Lu, W. (2012). Ambipolar inverters using SnO thin-film transistors with balanced electron and hole mobilities. Applied Physics Letters, 100(26), 263502.
    [38]Nomura, K., Kamiya, T., & Hosono, H. (2011). Ambipolar oxide thin‐film transistor. Advanced Materials, 23(30), 3431-3434.
    [39]Ogo, Y., Hiramatsu, H., Nomura, K., Yanagi, H., Kamiya, T., Kimura, M., ... & Hosono, H. (2009). Tin monoxide as an s‐orbital‐based p‐type oxide semiconductor: Electronic structures and TFT application. physica status solidi (a), 206(9), 2187-2191.
    [40]Hsu, P. C., Chen, W. C., Tsai, Y. T., Kung, Y. C., Chang, C. H., Hsu, C. J., ... & Hsieh, H. H. (2013). Fabrication of p-type SnO thin-film transistors by sputtering with practical metal electrodes. Japanese Journal of Applied Physics, 52(5S1), 05DC07.
    [41]Caraveo-Frescas, J. A., Nayak, P. K., Al-Jawhari, H. A., Granato, D. B., Schwingenschlögl, U., & Alshareef, H. N. (2013). Record mobility in transparent p-type tin monoxide films and devices by phase engineering. ACS nano, 7(6), 5160-5167.
    [42]Hsu, P. C., Chen, W. C., Tsai, Y. T., Kung, Y. C., Chang, C. H., Wu, C. C., & Hsieh, H. H. (2014). Sputtering deposition of P-type SnO films using robust Sn/SnO 2 mixed target. Thin Solid Films, 555, 57-61.
    [43]Fortunato, E., Barquinha, P., & Martins, R. (2012). Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances. Advanced materials, 24(22), 2945-2986.
    [44]Fortunato, E., Barros, R., Barquinha, P., Figueiredo, V., Park, S. H. K., Hwang, C. S., & Martins, R. (2010). Transparent p-type SnO x thin film transistors produced by reactive rf magnetron sputtering followed by low temperature annealing. Applied Physics Letters, 97(5), 052105.
    [45]Han, Y. J., Choi, Y. J., Jeong, C. Y., Lee, D., Song, S. H., & Kwon, H. I. (2015). Environment-dependent bias stress stability of p-type SnO thin-film transistors. IEEE Electron Device Letters, 36(5), 466-468.
    [46]Han, Y. J., Choi, Y. J., Cho, I. T., Jin, S. H., Lee, J. H., & Kwon, H. I. (2014). Improvement of long-term durability and bias stress stability in p-type SnO thin-film transistors using a SU-8 passivation layer. IEEE Electron Device Letters, 35(12), 1260-1262.
    [47]Luo, H., Liang, L., Cao, H., Dai, M., Lu, Y., & Wang, M. (2015). Control of ambipolar transport in SnO thin-film transistors by back-channel surface passivation for high performance complementary-like inverters. ACS applied materials & interfaces, 7(31), 17023-17031.
    Chapter 2
    [1]C. S. Choi, H. S. Kang, W. Y. Choi, H. J. Kim, W. J. Choi, D. J. Kim, K. Jang, T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors, vol. 9, pp. 6504–6529, 2009.
    [2]Streetman, Ben G. and Sanjay Banerjee, Noise in Solid State Devices and Circuits. New Jersey: Prentice Hall, 1986.
    [3]Reynolds, D. C., Look, D. C., Jogai, B., Litton, C. W., Collins, T. C., Harsch, W., & Cantwell, G. (1998). Neutral-donor–bound-exciton complexes in ZnO crystals. Physical Review B, 57(19), 12151.
    [4]Monroy, E., Calle, F., Munoz, E., Omnes, F., Gibart, P., & Munoz, J. A. (1998). Al x Ga 1− x N: Si schottky barrier photodiodes with fast response and high detectivity. Applied physics letters, 73(15), 2146-2148.
    [5]Neamen, D. A. (2003). Semiconductor physics and devices. McGraw-Hill Higher Education.
    [6]Hollahan, J. R., Rosler, R. S., Vossen, J. L., & Kern, W. (1978). Thin Film Processes. Academic, New York.
    [7]C. Y. Chang and S. M. Sze, ULSI Technology. New York: McGraw-Hill, 1996.
    [8]S. I. Shah, Handbook of Thin Film Process Technology. London: Institute of Physics Pub, 1995.
    Chapter 3
    [1]Zhang, J., Kong, X., Yang, J., Li, Y., Wilson, J., Liu, J., ... & Song, A. (2016). Analysis of carrier transport and band tail states in p-type tin monoxide thin-film transistors by temperature dependent characteristics. Applied Physics Letters, 108(26), 263503.
    [2]Zhang, J., Kong, X., Yang, J., Li, Y., Wilson, J., Liu, J., ... & Song, A. (2016). Analysis of carrier transport and band tail states in p-type tin monoxide thin-film transistors by temperature dependent characteristics. Applied Physics Letters, 108(26), 263503.
    [3]Zenkyu, R., Tajima, D., & Yuhara, J. (2012). Disordered surface structure of an ultra-thin tin oxide film on Rh (100). Journal of Applied Physics, 111(6), 064907.
    [4]Luo, H., Liang, L. Y., Cao, H. T., Liu, Z. M., & Zhuge, F. (2012). Structural, chemical, optical, and electrical evolution of SnO x films deposited by reactive rf magnetron sputtering. ACS applied materials & interfaces, 4(10), 5673-5677.
    [5]Chen, X. T., Wang, K. X., Zhai, Y. B., Zhang, H. J., Wu, X. Y., Wei, X., & Chen, J. S. (2014). A facile one-pot reduction method for the preparation of a SnO/SnO 2/GNS composite for high performance lithium ion batteries. Dalton Transactions, 43(8), 3137-3143.
    [6]Ab Kadir, R., Li, Z., Sadek, A. Z., Abdul Rani, R., Zoolfakar, A. S., Field, M. R., ... & Kalantar-Zadeh, K. (2014). Electrospun granular hollow SnO2 nanofibers hydrogen gas sensors operating at low temperatures. The Journal of Physical Chemistry C, 118(6), 3129-3139.
    [7]Zhang, J., Ma, Z., Jiang, W., Zou, Y., Wang, Y., & Lu, C. (2016). Sandwich-like CNTs@ SnO 2/SnO/Sn anodes on three-dimensional Ni foam substrate for lithium ion batteries. Journal of Electroanalytical Chemistry, 767, 49-55.
    [8]Zhang, D. F., Sun, L. D., Xu, G., & Yan, C. H. (2006). Size-controllable one-dimensinal SnO 2 nanocrystals: synthesis, growth mechanism, and gas sensing property. Physical Chemistry Chemical Physics, 8(42), 4874-4880.
    Chapter 4
    [1]Ito, M., Kon, M., Miyazaki, C., Ikeda, N., Ishizaki, M., Ugajin, Y., & Sekine, N. (2007). " Front drive" display structure for color electronic paper using fully transparent amorphous oxide TFT array. IEICE transactions on electronics, 90(11), 2105-2111.
    [2]Jeong, J. K., Jeong, J. H., Choi, J. H., Im, J. S., Kim, S. H., Yang, H. W., ... & Kim, M. (2008, May). 3.1: Distinguished paper: 12.1‐Inch WXGA AMOLED display driven by Indium‐Gallium‐Zinc oxide TFTs array. In SID Symposium Digest of Technical Papers (Vol. 39, No. 1, pp. 1-4). Blackwell Publishing Ltd.
    [3]Liao, M., & Koide, Y. (2006). High-performance metal-semiconductor-metal deep-ultraviolet photodetectors based on homoepitaxial diamond thin film. Applied physics letters, 89(11), 113509.
    [4]Park, K. B., Seon, J. B., Kim, G. H., Yang, M., Koo, B., Kim, H. J., ... & Lee, S. Y. (2010). High electrical performance of wet-processed indium zinc oxide thin-film transistors. IEEE Electron Device Letters, 31(4), 311-313.
    [5]Grover, M. S., Hersh, P. A., Chiang, H. Q., Kettenring, E. S., Wager, J. F., & Keszler, D. A. (2007). Thin-film transistors with transparent amorphous zinc indium tin oxide channel layer. Journal of Physics D: Applied Physics, 40(5), 1335.
    [6]Tang, C. W., & VanSlyke, S. A. (1987). Organic electroluminescent diodes. Applied physics letters, 51(12), 913-915.
    [7]Zhong, C. W., Lin, H. C., Liu, K. C., & Huang, T. Y. (2015). Impact of thermal oxygen annealing on the properties of tin oxide films and characteristics of p-type thin-film transistors. Japanese Journal of Applied Physics, 55(1), 016501.
    [8]Luo, H., Liang, L. Y., Liu, Q., & Cao, H. T. (2014). Magnetron-sputtered SnO thin films for p-type and ambipolar TFT applications. ECS Journal of Solid State Science and Technology, 3(9), Q3091-Q3094.
    [9]Saji, K. J., & Mary, A. R. (2015). Tin Oxide Based P and N-Type Thin Film Transistors Developed by RF Sputtering. ECS Journal of Solid State Science and Technology, 4(9), Q101-Q104.
    [10]Luo, H., Liang, L. Y., Cao, H. T., Liu, Z. M., & Zhuge, F. (2012). Structural, chemical, optical, and electrical evolution of SnO x films deposited by reactive rf magnetron sputtering. ACS applied materials & interfaces, 4(10), 5673-5677.
    [11]Togo, A., Oba, F., Tanaka, I., & Tatsumi, K. (2006). First-principles calculations of native defects in tin monoxide. Physical Review B, 74(19), 195128.
    [12]Guo, W., Fu, L., Zhang, Y., Zhang, K., Liang, L. Y., Liu, Z. M., ... & Pan, X. Q. (2010). Microstructure, optical, and electrical properties of p-type SnO thin films. Applied Physics Letters, 96(4), 042113.

    下載圖示 校內:2021-12-11公開
    校外:2021-12-11公開
    QR CODE