| 研究生: |
柳嘉哲 Liu, Chia-che |
|---|---|
| 論文名稱: |
估算μ-合成系統中最大結構奇異值的數值方法之比較 On the comparison of Numerical Methods for Estimating the Largest Structured Singular Value of μ-Synthesis System |
| 指導教授: |
王辰樹
Wang, Chern-Shuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 奇異值 、線性矩陣不等式 、牛頓法 |
| 外文關鍵詞: | LMI, Newton-type method, singular value |
| 相關次數: | 點閱:98 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
最大結構奇異值上界計算的數值演算一直在μ-合成控制問題扮演關鍵角色, 如文內所示, 最大結構奇異值的計算是NP-hard 的問題, 因此, 我們會專注在計算最大結構奇異值的上界之研究。一種牛頓法型態的演算法已發展, 一些和演算相關的理論結果也已被探究。
此文中, 我們也可以把此問題轉換成線性矩陣不等式(linear matrix inequality ,簡稱LMI) 來研討, 並學習如何使用MATLAB 內建的LMI Control Toolbox 數值求解LMI, 由數值結果的比較可知, 牛頓法的效能優於LMI Control Toolbox, 雖然LMI Control Toolbox 已被廣泛應用於這類問題, 最後我們就LMI 在廣義特徵值
問題上編纂簡易的使用手冊, 以供來者參考。
Numerical algorithms are proposed for computing an upper bound of the largest structured singular value which always plays a key role to a μ-synthesis control problem are proposed. Literatures have shown that the computations
for the largest structured singular value is an NP-hard problem. We hence concentrate on the study for computing an upper bound of the largest structured singular value in this dissertation.
In this dissertation, we firstly transfer the problem into the linear matrix inequality (abbreviated as LMI), and further use LMI Control Toolbox built in MATLAB to solve LMI. We compare numerical results using LMI Control
Toolbox with that using the Newton-type method which is recently developed. The comparison shows that the Newton’s method is more efficient than LMI Control Toolbox. We also appendix a for solving a generalized eigenvalue
problem in LMI form by using LMI control Toolbox.
[1] G. J. Balas, J. C. Doyle, K. Glover, A. Packard, and R. Smith, μ-Analysis and Synthesis Toolbox, Math Works, Natick, MA, 1995, Chap. 4.
[2] G. J. Balas, R. chiang, A. Packard, and M. Safonov, Robust Control Toolbox3, Math Works, Natick, MA, 1995, Chap. 9.
[3] S. P. Boyd and V. Balakrishnan, A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its L1-norm, Systems and Control Letters, (1990), Vol. 15, pp.
1-7.
[4] S. P. Boyd, L. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, 1994.
[5] K. C. Chen, Numerical Algorithms for Estimating Upper Bounds of the Largest Structured Singular Value in a μ-Synthesis System, Ph.D. thesis, NCKU, Tainan, Taiwan, 2007.
[6] J. C. Doyle, Analysis of feedback system with structured uncertainties, IEEE Proc., Part D, (1982), Vol. 129, No. 6, pp. 242-250.
[7] M. Fan, A. Tits, and J. Doyle, Robustness in the presence of mixed parametric uncertainty and unmodelled dynamics, IEEE Transactions on Automatic Control, (1991), Vol. AC-36, No. 1, pp. 25-38.
[8] P. Gahinet, A.Nemirovski, A. J. Laub, M. Chilali, LMI Control Toolbox, Math Works, Natick, MA, 1995, Chap. 8.
[9] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins U. P., 1996.
[10] C. T. Lawrence, A. L. Tits, and P. Van Dooren, A fast algorithm for the computation of an upper bound on the μ-norm, Automatica, (2000), Vol.36, pp. 449-456.
[11] J. Lee and T. F. Edgar, Upper bounds of structured singular values for mixed uncertainties, Proc. of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii USA, 2003, pp. 798-802.
[12] J. F. Magni and C. D‥oll, μ-analysis for flexible systems, ONERA-CERT, D’epartement d’Automatique B. P. 4025, F31055 Toulouse Cedex 04.
[13] M. L. Overton and P. Van Dooren, On computing the complex passivity radius. Proc. of the 44th IEEE Conference on Decision and Control and European Control Conference, Seville, Spain, 2005, pp. 7960-7964.
[14] A. Packard and J. Doyle, The complex structured singular value, Automatica, (1993), Vol. 29, no. 1,
pp. 72-109.
[15] O. Toker and H. ‥Ozbay, On the complexity of purely complex μ computation and relate problems in multidimensional systems, IEEE Trans. Auto.
Control, (1998), Vol. 43, no. 3, pp. 409-414.
[16] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control, Prentice Hall, N.J., 1995.