簡易檢索 / 詳目顯示

研究生: 藍澤豪
Na, Cher-How
論文名稱: 在IEEE 802.22應用感知無線電架構使用動態資源區塊重複分配法及其性能分析
A Dynamic Resource Block Reuse Mechanism and its Performance Analysis in IEEE 802.22 Wireless Regional Area Networks
指導教授: 陳曉華
Chen, Hsiao-Hwa
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 227
中文關鍵詞: IEEE 802.22無線廣域網絡應用感知無線電資源分配資源區塊
外文關鍵詞: IEEE 802.22, WRAN, Cognitive Radio, Resource Allocation, Resource Block
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • IEEE 802.22 無線廣域網絡是全世界第一個使用應用感知無線電的網絡規格。對執照使用者不造成干擾的情況下,它利用未被使用的執照頻段來進行無線通訊。這項措施緩解了目前免費頻段處於飽和狀態情況。此論文會先介紹IEEE 802.22的基本規格以及架構。接著會繼續講解此網絡的各個基地台共存問題以及資源分配議題。這篇論文以提出兩個機制為主要的貢獻。第一個機制稱為“框架重複使用分配法”,而第二個機制則稱為“動態資源區塊重複分配法”。

    框架重複使用分配法適用於多個基地台共同使用單一頻道的情況下。框架重複使用分配法又分成分散式和中樞式兩種。這兩種方式都是為了能在各個不相鄰的基地台重複使用同一個框架而提出的。此方法的利弊以及必需付出的代價皆會一一討論列出。框架重複使用分配法的性能分析以及模擬結果皆證明了此方法可以用來提升框架的使用數量,以及解決因缺乏資源導致離線的問題。

    動態資源區塊重複分配法是為了剋服框架重複使用分配法的缺陷而提出的另一個機制。動態資源區塊重複分配法可適用於多個基地台使用多個頻道的情況。動態資源區塊重複分配法可讓一個未被任何基地台使用資源區塊被各個不相鄰的基地台重複使用。此方法的利弊以及必需付出的代價皆會一一討論列出。動態資源區塊重複分配法的性能分析以及模擬結果皆證明了此方法可以在不改變原本系統架構的情況下提高基地台的傳輸量。此外,動態資源區塊重複分配法減少了資源分配所需的時間,並且簡化了釋放資源的過程。動態資源區塊重複分配法也能夠根據各個基地台目前網絡的擁塞程度進行資源區塊的分配。

    IEEE 802.22, which was developed for wireless regional area networks (WRANs), is the first Cognitive Radio (CR) enabled network standard. It helps to solve spectrum shortage problem by making use of licensed spectrum on the premise that it will not cause interference to licensed users. This thesis will start with an introduction of basic structure of IEEE 802.22. Then the self-coexistence mechanism and resource allocation issues will be discussed. Two mechanisms called “Frame Reuse Allocation (FRA)” and “Dynamic Resource Block Reuse (DRBR)” are proposed, which are the main contribution of this thesis.

    The FRA mechanism can be used when multiple adjacent base stations operating on the same channel. FRA mechanism is proposed in the distributed and centralized way. Both of the ways try to reuse a same frame in multiple cells that are not adjacent with each other. Their advantages and disadvantages as well as their trade-offs will be discussed. The performance analysis and simulation results show that FRA mechanism can be used to increase the number of frame usage, and address the forced disconnection problems which will decrease the QoS.

    The DRBR mechanism is proposed to overcome the deficiencies of FRA mechanism. DRBR mechanism can be used when multiple adjacent base stations operating on different channels. DRBR allows an unused resource block can be used by multiple cells that are not adjacent with each other. Its advantages and disadvantages as well as the trade-offs will be discussed. The performance analysis and simulation results show that DRBR mechanism can increase a cell throughput without changing the original system structure. Besides, the overhead cost in resources allocation is reduced and the process in resource releasing is simplify. DRBR mechanism can also response to different traffic situations according to the blocking rate of different base stations.

    摘要 i Abstract iii Acknowledgements v Table of Contents vii List of Tables xi List of Figures xvii Abbreviations xxxvii Symbols xli 1 Introduction 1 1.1 Radio Spectrum . . . . . . . . . . . . . . . . . . . 1 1.2 WRAN Development . . . . . . . . . . . . . . . . . . 2 1.3 WRAN Worldwide Regulation . . . . . . . . . . . . . 6 1.4 Coexistence . . . . . . . . . . . . . . . . . . . . .7 1.5 Research Topic . . . . . . . . . . . . . . . . . . . 9 2 WRAN Basic Structure 13 2.1 System Parameters . . . . . . . . . . . . . . . . . 15 2.1.1 OFDM Symbol . . . . . . . . . . . . . . . . . 16 2.1.2 Data Rates . . . . . . . . . . . . . . . . . .19 2.1.3 Duplex Mode . . . . . . . . . . . . . . . . . 21 2.2 General Superframe Structure . . . . . . . . . . . .22 2.2.1 General Frame Structure . . . . . . . . . . . 23 2.2.2 Field Definition . . . . . . . . . . . . . . .26 2.3 Propagation Delay . . . . . . . . . . . . . . . . . 29 2.3.1 MAC Packet Scheduling . . . . . . . . . . . . 29 2.3.2 TTG and RTG . . . . . . . . . . . . . . . . . 31 2.4 Synchronization . . . . . . . . . . . . . . . . . . 33 2.4.1 Analysis of Synchronization . . . . . . . . . 34 3 Self-Coexistence in WRAN Systems 37 3.1 Coexistence Beacon Protocol . . . . . . . . . . . . 38 3.2 CBP Packet . . . . . . . . . . . . . . . . . . . . .39 3.2.1 CBP Packet Structure . . . . . . . . . . . . .39 3.2.2 CBP Packet Transmission Path . . . . . . . . .41 3.2.3 CBP Packet Duration . . . . . . . . . . . . . 43 3.3 Self-Coexistence Window . . . . . . . . . . . . . . 43 3.3.1 SCW Structure . . . . . . . . . . . . . . . . 45 3.3.2 SCW Schedule . . . . . . . . . . . . . . . . .46 3.3.3 Collision Probability of Using Contention-Based SCW . . . . . . . . . 48 3.3.4 Maximum Propagation Distance of a CBP Packet .48 3.3.5 Network Discovery Using SCW . . . . . . . . . 49 3.4 Self-Coexistence Procedure . . . . . . . . . . . . .50 4 Resource Allocation in Self-Coexistence 53 4.1 Two Factors in Resource Allocation . . . . . . . . .54 4.1.1 Throughput . . . . . . . . . . . . . . . . . .55 4.1.2 Fairness . . . . . . . . . . . . . . . . . . .57 4.1.3 Trade-Off . . . . . . . . . . . . . . . . . . 59 4.2 Channel Allocation Mechanism . . . . . . . . . . . .60 4.2.1 Spectrum Etiquette . . . . . . . . . . . . . .60 4.2.1.1 Channel Classification . . . . . . . .61 4.2.1.2 Backup and Candidate Channel Selection . . . . . . . . . . . . . . . . . . . . 63 4.2.2 Reference [23] . . . . . . . . . . . . . . . .67 4.2.3 Reference [24] . . . . . . . . . . . . . . . .67 4.3 Frame Allocation Mechanism . . . . . . . . . . . . .68 4.3.1 On-Demand Frame Contention . . . . . . . . . .68 4.3.1.1 Message Flow of ODFC . . . . . . . . .68 4.3.1.2 Frame Contention Procedure . . . . . .70 4.3.2 Reference [16] . . . . . . . . . . . . . . . .75 4.3.3 Reference [18] . . . . . . . . . . . . . . . .76 4.3.4 Reference [27] . . . . . . . . . . . . . . . .77 4.4 Performance Analysis of ODFC . . . . . . . . . . . .77 4.4.1 Total Throughput of ODFC . . . . . . . . . . .78 4.4.2 Average Throughput of ODFC . . . . . . . . . .78 4.4.3 Forced Disconnection Probability of ODFC . . .79 4.4.4 Failure Probability of ODFC . . . . . . . . . 81 4.4.5 Initializing Time of ODFC . . . . . . . . . . 84 4.4.6 Leaving an ODFC Group . . . . . . . . . . . . 85 4.4.7 Example Situation . . . . . . . . . . . . . . 86 4.4.7.1 Situation 1 . . . . . . . . . . . . . 86 4.4.7.2 Situation 2 . . . . . . . . . . . . . 87 4.4.7.3 Situation 3 . . . . . . . . . . . . . 88 4.4.7.4 Situation 4 . . . . . . . . . . . . . 89 5 Frame Reuse Allocation Mechanism 91 5.1 Default Reuse Pattern . . . . . . . . . . . . . . . 92 5.2 Distributed FRA Mechanism . . . . . . . . . . . . . 95 5.2.1 DFRA Procedure . . . . . . . . . . . . . . . .95 5.3 Challenge in using DFRA . . . . . . . . . . . . . . 97 5.4 Centralized FRA Mechanism . . . . . . . . . . . . .100 5.4.1 Coordinator in CFRA . . . . . . . . . . . . .100 5.4.2 CFRA Priority Table . . . . . . . . . . . . .101 5.4.3 CFRA Procedure . . . . . . . . . . . . . . . 104 5.5 Performance Analysis of DFRA . . . . . . . . . . . 109 5.5.1 Total Throughput of DFRA . . . . . . . . . . 109 5.5.2 Average Throughput of DFRA . . . . . . . . . 109 5.5.3 Forced Disconnection Probability of DFRA . . 110 5.5.4 Failure Probability of DFRA . . . . . . . . .110 5.5.5 Initializing Time of DFRA . . . . . . . . . .113 5.5.6 Leaving a DFRA group . . . . . . . . . . . . 113 5.6 Performance Analysis of CFRA . . . . . . . . . . . 113 5.6.1 Total Throughput of CFRA . . . . . . . . . . 114 5.6.2 Average Throughput of CFRA . . . . . . . . . 114 5.6.3 Forced Disconnection Probability of CFRA . . 115 5.6.4 Failure Probability of CFRA . . . . . . . . .115 5.6.5 Initializing Time of CFRA . . . . . . . . . .115 5.6.6 Leaving a CFRA group . . . . . . . . . . . . 116 5.6.7 Trade-off in using different value of Rp . . 116 5.7 Comparison of ODFC, DFRA and CFRA . . . . . . . . .117 5.7.1 Mechanism Complexity . . . . . . . . . . . . 117 5.7.2 Total Throughput . . . . . . . . . . . . . . 117 5.7.3 Forced Disconnection Probability . . . . . . 118 5.7.4 Failure Probability . . . . . . . . . . . . .119 5.7.5 Initializing Time . . . . . . . . . . . . . .119 5.8 Power Control . . . . . . . . . . . . . . . . . . .120 5.8.1 Transmit Power Control Mechanism . . . . . . 122 5.8.2 Directional Antenna . . . . . . . . . . . . .123 5.9 Performance Analysis through Simulation . . . . . .125 5.9.1 Number of Frame Usage under Different Cell Deployment . . . . . . . . . 126 5.9.2 Forced Disconnection Simulation . . . . . . .136 5.9.3 Fairness Calculation . . . . . . . . . . . . 137 5.9.4 Fairness Simulation . . . . . . . . . . . . .138 5.9.5 Optimal Allocation Calculation . . . . . . . 146 5.9.6 Optimal Allocation Simulation . . . . . . . .148 5.9.7 Trade-off in using different value of Rp in CFRA . . . . . . . . . . . . 153 6 Dynamic Resource Block Reuse Mechanism 159 6.1 The Concept of Resource Block . . . . . . . . . . .159 6.2 Primary and Secondary Occupier of Resource Block . 162 6.3 Control Messages in DRBR Mechanism . . . . . . . . 165 6.4 Procedure of DRBR Mechanism . . . . . . . . . . . .167 6.4.1 Occupy Resource Block . . . . . . . . . . . .168 6.4.2 Release Resource Block . . . . . . . . . . . 169 6.4.3 Flow Chart of DRBR Mechanism . . . . . . . . 169 6.4.4 Messages Flow of DRBR Mechanism . . . . . . .172 6.5 Performance Analysis for DRBR Mechanism . . . . . .172 6.6 Comparison with the Auction-Based Mechanism . . . .175 7 Conclusion 207 Bibliography 215 A Data Rate of ODFC, DFRA and CFRA Mechanism under AWGN Channel 221 B The Appearance of Licensed User under DRBR Mechanism 225

    [1] A. Sharifloo, M. Mirakhorli, M. Esmaeili, and A. T. Haghighat, “A Leader Election Algorithm for Clustered Groups,” Industrial and Information Systems 2007, pp. 1-4, Aug. 2007.

    [2] Amir Ghasemi, and Elvino S. Sousa, “Spectrum Sensing in Cognitive Radio Networks: Requirements, Challenges and Design Trade-offs,” IEEE Communications Magazine, vol. 46, no. 4, pp. 32-39, Apr. 2008.

    [3] Sai Shankar N, “Overview of Blind Sensing Techniques Considered in IEEE 802.22 WRANs,” Sensor and Ad Hoc Communications and Networks Workshops 2008, pp. 1-4, Jun. 2008.

    [4] Stephen J. Shellhammer, “Spectrum Sensing in IEEE 802.22,” FirstWorkshop on Cognitive Information Processing 2008, Jun. 2008.

    [5] Ying-Chang Liang, Anh Tuan Hoang, Hsiao-Hwa Chen, “Cognitive Radio on TV Bands: A New Approach to Provide Wireless Connectivity for Rural Areas,” IEEE Wireless Communications, vol. 15, no. 3, pp. 16-22, Jun. 2008.

    [6] Matthew Sherman, Apurva N. Mody, Ralph Martinez, Christian Rodriguez, and Ranga Reddy, “IEEE Standards Supporting Cognitive Radio and Networks, Dynamic Spectrum
    Access, and Coexistence,” IEEE Communications Magazine, vol. 46, no. 7, pp. 72-79, Jul. 2008.

    [7] Shaoyi Xu, Yanlei Shang, and Haiming Wang, “Transmitted Reference-Based Spectrum Sensing in IEEE 802.22 WRAN Networks,” International Symposium on Communications and Information Technologies 2008, pp. 702-706, Oct. 2008.

    [8] Sung Sue Hwang, Dong Chan Park, Suk Chan Kim, Myung Sun Song, and Sun Min Lim, “Spectrum Sensing Using Bussgang Theorem for IEEE 802.22 WRAN,” Military Communications Conference 2008, pp. 1-5, Nov. 2008.

    [9] Carl R. Stevenson, Gerald Chouinard, Zhongding Lei, Wendong Hu, Stephen J. Shellhammer, and Winston Caldwell, “IEEE 802.22: The First Cognitive Radio Wireless Regional Area Network Standard,” IEEE Communications Magazine, vol. 47, no. 1, pp. 130-138, Jan. 2009.

    [10] Tevfik Yucek, and Huseyin Arslan, “A Survey of Spectrum Sensing Algorithms for Cognitive Radio Applications,” IEEE Communications Surveys & Tutorials, vol. 11, no. 1, pp. 116-130, Feb. 2009.

    [11] Coleman Bazelon, “Licensed or Unlicensed: The Economic Considerations in Incremental Spectrum Allocation,” IEEE Communications Magazine, vol. 47, no. 3, pp. 110-116, Mar. 2009.

    [12] Ray Chen, Weiying Li, Jiandong Li, “Auction-Based Inter BS Spectrum Sharing for IEEE 802.22 WRAN Systems,” IEEE Conference on Industrial Electronics and Applications 2009, pp. 1787 - 1791, May 2009.

    [13] Ali Eksim, Selman Kulac, and Murat H. Sazli, “Effective Cooperative Spectrum Sensing in IEEE 802.22 Standard with Time Diversity,” Advances in Computational Tools for Engineering Applications 2009, pp. 528-531, Jul. 2009.

    [14] Sunmin Lim, Hoiyoon Jung, and Myung Sun Song, “Cooperative Spectrum Sensing for IEEE 802.22 WRAN System,” International Conference on Computer Communications and Networks 2009, pp. 1-5, Aug. 2009.

    [15] Raed Al-Zubi, Mohammad Z. Siam, and Marwan Krunz, “Coexistence Problem in IEEE 802.22 Wireless Regional Area Networks,” IEEE Global Communications Conference 2009, pp. 1-6, Nov. 2009.

    [16] P. Camarda, C. Cormio, and C. Passiatore, “An Exclusive Self-Coexistence (ESC) Resource Sharing Algorithm for Cognitive 802.22 Networks,” International Symposium on Wireless Pervasive Computing 2010, pp. 128-133, May 2010.

    [17] Hyoil Kim, and Kang G. Shin, “In-Band Spectrum Sensing in IEEE 802.22 WRANs for Incumbent Protection,” IEEE Transactions On Mobile Computing, vol. 9, no. 12, pp. 1766-1779, Dec. 2010.

    [18] C. Passiatore, and P.Camarda, “A Centralized Inter-Network Resource Sharing (CIRS) Scheme in IEEE 802.22 Cognitive Networks,” IFIP Annual Mediterranean Ad Hoc Networking Workshop 2011, pp. 17-24, Jun. 2011.

    [19] “IEEE Standard for Information Technology - Local and Metropolitan Area Networks - Specific Requirements - Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and Procedures for Operation in the TV Bands,” IEEE Std 802.22-2011, pp. 1–680, Jul. 2011.

    [20] Bader Al-Manthari, Nidal Nasser, and Hossam Hassanein,“Congestion Pricing inWireless Cellualr Network,” IEEE Communications Surveys & Tutorials, vol. 13, no. 3, pp. 358-371, Jul. 2011.

    [21] Chittabrata Ghosh, Sumit Roy, and Dave Cavalcanti, “Coexistence Challenges for Heterogeneous Cognitve Wireless Networks in TV White Spaces,” IEEE Wireless Communications, vol. 18, no. 4, pp. 22-31, Aug. 2011.

    [22] Gabriel P. Villardi, Yohannes D. Alemseged, Chen Sun, Chin-Sean Sum, Tran Ha Nguyen, Tuncer Baykas, and Hiroshi Harada, “Enabling Coexistence of Multiple Cognitive Networks in TV White Space,” IEEE Wireless Communications, vol. 18, no. 4, pp. 32-40, Aug. 2011.

    [23] Saptarshi Debroy, Shameek Bhattacharjee, and Mainak Chatterjee, “Performance based Channel Allocation in IEEE 802.22 Networks,” Personal Indoor and Mobile Radio Communications 2011, pp. 619-623, Sep. 2011.

    [24] Seung-Hoon Hwang, and Cha-Eul Jeon, “A Novel Channel Allocation Scheme in IEEE 802.22 Systems,” International Conference on Computing, Networking and Communications 2012, pp. 883-886, Jan. 2012.

    [25] Tuncer Baykas, Mika Kasslin, Mark Cummings, Hyunduk Kang, Joe Kwask, Richard Paine, Alex Reznik, Rashid Saeed, Stephen J. Shellhammer, “Developing a Standard for TV White Space Coexistence: Technical Challenges and Solution Approaches,” IEEE Wireless Communications, vol. 19, no. 1, pp. 10-22, Feb. 2012.

    [26] Rong Yu, Yan Zhang, Liu Yi, ShengLi Xie, LingYang Song, and Mohsen Guizani, “Secondary Users Cooperation in Cognitive Radio Networks: Balancing Sensing Accuracy and Efficiency,” IEEE Wireless Communications, vol. 19, no. 2, pp. 30-37, Apr. 2012.

    [27] M. Yoo and S. Hwang, “A Self-Coexistence Method for the IEEE 802.22 Cognitive WRAN,” WSEAS, Recent Researches in Automatic Control, Systems Science and Communications, pp. 169-172, Jul. 2012.

    [28] Bo Gao, Jung-Min “Jerry” Park, Yaling Yang, and Sumit Roy, “A Taxonomy of Coexistence Mechanisms for Heterogeneous Cognitive Radio Networks Operating in TV White Spaces,” IEEE Wireless Communications, vol. 19, no. 4, pp. 41-48, Aug. 2012.

    [29] Maziar Nekovee, Tim Irnich, and Jorgen Karlsson, “Worldwide Trends in Regulation of Secondary Access to White Spaces Using Cognitive Radio,” IEEE Wireless Communications,
    vol. 19, no.4, pp. 32-40, Aug. 2012.

    [30] William Webb, “On Using White Space Spectrum,” IEEE Communications Magazine, vol. 50, no. 8, pp. 145-151, Aug. 2012.

    [31] Chang-Woo Pyo, Xin Zhang, Chunyi Song, Ming-Tuo Zhou, and Hiroshi Harada, “A New Standard Activity in IEEE 802.22 Wireless Regional Area Networks: Enhancement for Broadband Services and Monitoring Applications in TV Whitespace,” Wireless Personal Multimedia Communications Symposium 2012, pp. 108-112, Sep. 2012.

    [32] http://www.fcc.gov/encyclopedia/white-space-database-administration

    [33] http://en.wikipedia.org/wiki/Pareto distribution

    無法下載圖示 校內:2019-08-04公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE