| 研究生: |
陳政凱 Chen, Chang-kai |
|---|---|
| 論文名稱: |
不同表面處理方式對牙科陶瓷特性及微鍵結強度之作用 Effects of different surface treatments on characteristics and micro-tensile bond strength of dental ceramics |
| 指導教授: |
莊淑芬
Chuang, Shu-fen 張志涵 Chang, Chih-han 李澤民 Lee, Tse-min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 牙科陶瓷 、表面處理 、氫氟酸 、微拉伸鍵結強度 、氧電漿 |
| 外文關鍵詞: | hydrofluoric acid, oxygen plasma, microtensile bond test, dental ceramic, surface treatment |
| 相關次數: | 點閱:92 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現代的牙科中,全瓷補綴物由於其優異的美觀性質和絕佳機械強度受到高度的矚目。全瓷補綴物的表面在黏著前,需要藉著物理或化學性的前處理,以達到與牙齒黏結的效果。而不同的處理方式,與全瓷材料的組成及結構等,對於處理後的表面型態與黏著結果,都具有非常重要的影響。氧電漿處理在陶瓷工業上是一個有效改變表面能量的方式,然而在牙科的應用上則需要被評估。
本實驗的目的在觀察處理完後的陶瓷表面型態和對黏著的影響。我們選用四種不同的牙科陶瓷VITA VMK68、ProCAD、EmpressⅡ、In-Ceram,並且選用四種不同方式處理陶瓷表面:9%氫氟酸處理90 秒、 50 um 氧化鋁噴砂處理10 秒、50 um氧化鋁噴砂處理10 秒再利用氧電漿處理5 分鐘、及二氧化矽處理之噴砂系統
(CoJet system)。處理過的陶瓷試片以接觸角測量器測量濕潤性質,及表面粗糙度,之後置於電子顯微鏡底下觀察。結果發現9%氫氟酸和氧化鋁噴沙處理所製造出的粗糙度最為明顯。9%氫氟酸處理降低了液體在陶瓷表面的接觸角,利用氧電漿處理過後的試片接觸角亦較噴砂試片低,顯示此二者具有較高的表面能量。將處理過的樣本與
樹脂黏劑黏著後切成微小條狀樣本。利用萬能測試機進行微拉伸黏著鍵結強度測試。發現利用9%氫氟酸處理過後的試片黏著強度明顯較其他組為高,其次為Cojet system。雖然利用噴砂處理的黏著強度較低,然而在氧電漿處理過後,強度則明顯變高。根據本實驗結果,氫氟酸仍是本實驗中所採用的陶瓷材料黏著前表面處理中最有效的方式。利用噴砂來處理陶瓷表面仍不足以提供良好的黏著度。噴砂伴隨氧電漿處理對牙科陶瓷會是一種相當有潛力的表面處理方式。
In modern dentistry, all-ceramic restorations are appreciated as their highly esthetic appearances. Treatments of ceramic surfaces before cementation, through mechanical or chemical approaches, are necessary for the ceramic/tooth bond formation. The selection of surface treatments, composition and microstructure of all-ceramic restorations, are important in the resultant bond strength between ceramic and tooth. Oxygen plasma treatment has been reported as an effective way to change the surface energy of in ceramic industry. Its potential application in dental ceramic is worth investigations.
The aim of this study was to evaluate the influence of various treatments on the ceramics surface and bond strength. Ceramic disks were prepared with either of VITA
vmk68, ProCAD , EmpressⅡ, In-Ceram ceramics. The ceramic disks were mounted and subjected to one of the following treatments:(a) 9% hydrofluoric acid (HF) treatment for
90 seconds (b) 50μm Al2O3 air abrasion for 10 seconds (d) 99.99% oxygen plasma for 5 minutes after abrasion (d) silica-coating abrasion system (CoJet system). The results
showed that greater surfaces roughness was observed in 9% HF and abrasion treated ceramics. In comparisons with the untreated group, 9%HF and oxygen plasma treatments
reduced contact angles which reflected higher surface energy. In a subsequent microtensile bond test, ceramic blocks receiving above treatments were cemented with
resin blocks. After soaking in water bath for 24 hours, they were cut into microbars and mounted in the jig of universal testing machine. The results showed that 9%HF treated ceramics exhibited the highest bond strength, followed by the CoJet system. Ceramics treated with Al2O3 abrasion showed the lowest bond strength. In this study, oxygen plasma combined with Al2O3 air abrasion improved the bond strength. According to the results, HF is still the most effective pre-cementation treatment for the ceramics used in this study. Roughening the ceramic surfaces with air abrasion prior to cementation could not provide acceptable bond strengths for ceramics. The air
abrasion with oxygen plasma treatment may be a promising approach to treat dental ceramics.
Andersson M, Oden A. A new all-ceramic crown – A dense-sintered, high purity alumina coping with porcelain. Acta Odontol Scand 1993; 5:c59-64.
Amaral R, Özcan M, Valandro LF, Bottino MA. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: The effect of surface conditioning.Dent Mater 2006; 22: 283-290.
Blixt M, Adamczak E, Linde´n LA, Ode´n A, Arvidson K. Bonding to densely sintered alumina surfaces: effect of sandblasting and silica coating on shear bond strength of
luting cements. Int J Prosthodont 2000; 13: 221-226.
Chadwick RG, Mason AG, Sharp W. Attempted evaluation of three porcelain repair systems—what are we really testing? J Oral Rehabil 1998; 25: 610–615.
Chan CM, Ko TM, Hiraoka H. Growth of primary and secondary amine films from polyatomic ion deposition. Surf. Sci. Rep 1996; 24: 3–54.
Chen JH, Matsumura H, Atsuta M. Effect of different etching periods on the bond strength of a composite resin to a machinable porcelain. J Dent 1998; 26: 53-58.
Diaz-Arnold AM, Schneider RL, Aquilino SA. Bond strengths of intraoral porcelain repair materials. J Prosthet Dent 1989; 61:305–309.
Della Bona A, Northeast SE. Shear bond strength of resin bonded ceramic after different try-in procedures. J Dent 1994; 22: 103–107.
Della Bona A, Anusavice KJ, DeHoff PH. Weibull analysis and flexural strength of hot-pressed core and veneered ceramic structures. Dent Mater2003; 19:662-669.
Guler AU, Yilmaz F, Ural C.Evaluation of 24-hour shear bond strength of resin composite o porcelain according to surface treatment. Int J Prosthodont 2005; 18: 156-160.
Hondrum SO. A review of the strength properties of dental ceramics. J Prosthet Dent 192;67:859-65
Holand W, Schweiger M, Frank M, Rheinberger V. A comparison of the microstructure and properties of the IPS Empress 2 and the IPS Empress glass-ceramics. J Biomed
Mater Res 2000; 53: 297-303.
Kato H, Matsumura H, Tanaka T, Atsuta M. Bond strength and durability of porcelain bonding systems. J Prosthet Dent 1996; 75: 163-168.
Kato H, Matsumura H, Atsuta M. Effect of etching and sandblasting on bond strength to sintered porcelain of unfilled resin. J Oral Rehabil 2000; 27: 103-110.
Kern M, Thompson VP. Sandblasting and silica coating of a glass-infiltrated alumina ceramic: volume loss, morphology and changes in the surface composition. J Prosthet Dent 1994;71: 453-461.
Marquis PM. The influence of cements on the mechanical performance of dental ceramics. Bioceramics1992; 5: 317-324.
McLean JW, Hughes TH. The reinforcement of dental porcelain with ceramic oxides. Br Dent J 1965;119:251-67.
Nathanson D. Principles of porcelain use as an inlay/onlay material. In: Porcelain and composite inlays and onlays: esthetic posterior restorations. Chicago, Quintessence,1993
23-32.
Nishigawa G, Maruo Y, Oka M, Oki K, Minagi S, Okamoto M. Plasma treatment increased shear bond strength between heat cured acrylic resin and self-curing acrylic resin. Journal of Oral Rehabilitation 2003; 30: 1081–1084.
Özcan M, Alkumru HN, Gemalmaz D. The effect of surface treatment on the shear bond strength of luting cement to a glass-infiltrated alumina ceramic. Int J Prosthodont 2001;
14: 335-339.
Özcan M. Evaluation of alternative intraoral repair techniques for fractured ceramic-fused-to-metal restorations. J Oral Rehabil, 2003; 30: 194-203.
Pröbster L, Diehl J. Slip-casting alumina ceramics for crown and bridge restorations.Quintessence Int 1992; 23: 25-31
Salzman M., O’Malley RN. Updates on the Evaluation and Management of Caustic Exposures. Emerg Med Clin N Am 2007; 25: 459–476.
Sen D, Poyrazoglu E, Tuncelli B, Goller G. Shear bond strength of resin luting cement to glass-infiltrated porous aluminum oxide cores. J Prosthet Dent 2000; 83: 210-215.
Spohr AM, Sobrinho LC, Consani S, Sinhoreti MA, Knowles JC. Influence of Surface Conditions and Silane Agent on the Bond of Resin to IPS Empress 2 Ceramic, J Prosthet
Dent 2002; 88: 277-284.
Stewart GP, Jain P, Hodges J. Shear bond strength of resin cements to both ceramic and dentin, J Prosthet Dent 2002; 88: 277-284.
Sun R, Suansuwan N, Kilpatrick N, SwainM. Characterisation of tribochemically assisted bonding of composite resin to porcelain and metal. J Dent 2000; 28: 441-445.
Thurmond JW, Barkmeier WW, Wilwerding TM. Effect of porcelain surface treatments on bond strengths of composite resin bonded to porcelain.J Prosthet Dent 1994; 72:355-359.
Tjan AHL, Nemetz H. A comparison of the shear bond strength between two composite resins and two etched ceramic materials. Int J Prosthodont 1988; 1: 73–79.
Wu Z, Xanthopoulos N, Reymond F, Rossier JS,Girault. HH. Polymer microchips bonded by O2-plasma activation. Electrophoresis 2002; 23: 782–790.