簡易檢索 / 詳目顯示

研究生: 沈耀榮
Sam, Yaw-Wing
論文名稱: 微噴流衝擊熱傳之數值研究
Numerical Study of Microjet Impingement Heat Transfer
指導教授: 楊玉姿
Yang, Yue-Tzu
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 76
中文關鍵詞: 微噴流紊流衝擊數值計算熱傳
外文關鍵詞: Microjet, Turbulent, Impingement, Numerical calculation, Heat Transfer
相關次數: 點閱:60下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要是針對軸對稱、侷限、不可壓縮微噴流衝擊至等熱通量加熱平面的流場與熱傳特性進行數值研究。文中採用穩態、二維圓柱座標,藉由紊流理論的數值模擬探討微噴流衝擊流場及溫度場之特性以驗證物理模式之可行性。本文中紊流統御方程式是以控制體積法為基礎,配合有限差分法及冪次法則來離散成差分方程式。對於紊流的結構則是以雙方程紊流模式來描述,並採用SIMPLE運算法則求解壓力-速度結合的問題。

    本文研究的參數包含衝擊高度/噴口直徑之比值(H/D = 2、4)、雷諾數(Re = 210、419、524)、熱通量(q" =50 、100 、150 ),工作介質為空氣。數值預測結果分別以加熱區表面的紐塞數、無因次溫度、流場速度向量及熱傳係數分佈圖來表示。根據文獻中沈(2003)、顏(2004)所進行之微噴流衝擊實驗結果顯示,在此微尺度下,雖然雷諾數不大,但由於其所對應的速度已相當快,流場已呈紊流狀態;同時為了驗證文獻中Pence et al.(2003)所提到在此微尺度下,運用層流與紊流理論來進行數值模擬,其表面溫度的差異不大;故本文採用紊流理論來探討此流場。由流場速度向量圖可以發現,在衝擊高度低(H/D = 2)和雷諾數小(Re = 210)的流場,當微噴流之層流區衝擊到加熱表面時,其衝擊後之壁面流會在表面形成一個穩定與結構性之大尺度渦流。然而,當衝擊高度及雷諾數增加時,由於微噴流在剪流層的不穩定性擾動無足夠的能量生成大尺度渦流,故此現象就會消失;這與文獻中沈(2003)、顏(2004)提到之微噴流衝擊流場結構的特性吻合。雷諾數對於流場特性及熱傳效應也有相當顯著的影響;紐塞數在加熱區表面的值會隨著雷諾數的增加而增加,且在大約r/R =1.2的地方都會產生偏離中心線的極大值,這也與Pence et al.(2003)在文獻中所提到的一致,證明本數值研究之正確性。本文數值預測可以提供予微機電系統及CPU之散熱設計作參考。

    The investigation of the flow field and heat transfer characteristic of an axisymmetric, confined, incompressible microjet impinging on a flat surface with an uniform heat flux has been carried out numerically in this study. The numerical simulation of a steady, 2D cylindrical coordinate, turbulent flow heat transfer is adopted to test the accuracy of the physical model. The turbulent governing equations are solved by using the Control-Volume based finite-difference method with the power-law scheme, and the well-known turbulence model to describe the turbulent structure. The SIMPLE algorithm is used to solve the pressure-velocity coupling.

    The parameters studied include nozzle to impinging surface spacing (H/D=2、4)、Reynolds number (Re=210、419、524), and also heat flux (q" =50 、100 、150 ). The working medium is air. The local Nusselt number distributions along with the nondimensional temperature, heat transfer coefficient distributions and the velocity vector plots near the impingement surface are predicted and analyzed. According to the experimental studies of microjet impingement by Shen (2003) and Yen (2004), even the Reynolds numbers are low, the corresponding velocities are very fast. And also, in order to verify the results of Pence et al. (2003) that there was no obvious change in the surface temperature along the impingement surface using a turbulence model, therefore turbulent flow is adopted for this numerical calculation. From the velocity vector plots, it is found that there is a coherence structures of large vortex observed at the low impinging distance (H/D=2) and low Reynolds number (Re=210). Owing to the fact that instability waves in the shear layer do not have enough energies to roll up into the ring vortex for the microjet, the large vortex will disappear by increasing the impinging distance and the Reynolds number, the same flow structure characteristics as presented by the experiments of Shen (2003) and Yen (2004). The effects of Reynolds number on heat transfer and flow field are significant. The Nusselt number increases with increasing Reynolds number, and the local maxima is observed near r/R=1.2 rather than at the centerline, showing good agreement with Pence et al.(2003) and supporting the validity of the present study. Numerical predictions obtained from this study will provide physical insight into the MEMS system and the cooling of CPU.

    中文摘要 ……………………………I 英文摘要 ……………………………III 誌謝 …………………………………V 目錄 …………………………………VII 表目錄 ………………………………IX 圖目錄 ………………………………X 符號說明 ……………………………XII 第一章 序論 1-1研究動機及背景 ……………1 1-2文獻回顧 ……………………2 1-3本文探討之主題及方法 ……6 第二章 理論分析 2-1 空間流場解析 ……………8 2-2 紊流模式 …………………12 2-2-1 紊流雙方程模式………12 2-3 牆函數 ……………………17 2-4 邊界條件……………………21 2-5 局部紐塞數(Local Nusselt number)之 計算………………………………23 2-6 紐森數(Knudsen number) 之計算……………………………24 第三章 數值方法 …………………27 3-1 概述 ………………………27 3-2 格點位置的配置 …………29 3-3 ψ之差分方程式 …………30 3-4 vr、vz 動量方程式之 差分方程式…………………36 3-4-1 壓力修正方程式………36 3-5 收斂條件 …………………39 3-6 差分方程式的解法…………41 3-6-1 數值程序………………42 3-6-2 電腦計算時間…………43 第四章 結果討論 …………………45 4-1 格點獨立測試 ……………46 4-2 流場特性分析 ……………48 4-2-1 速度向量分佈 ………49 4-2-2 紊流動能分佈 ………49 4-3 溫度場特性分析 …………50 4-3-1 加熱區表面溫分佈……50 4-3-2 熱傳係數分佈 ………51 第五章 結論與建議 ………………71 5-1 結論 ………………………71 5-2 未來研究方向之建議 ……72 參考文獻 ……………………………73

    Agarwal P.K. and Bower W.W., “Navier-Stokes Computations of Turbulent Compressible Two-Dimensional Impinging Jet Flowfields”, AIAA Journal, Vol. 20, No.5, pp. 577-584, 1982.

    Allan, R., “MEMS Micro Heat Exchanger Employ Impinging Jets to Boost Cooling Efficiency”, Electronic Design, 47 (7), pp. 29-30, 1999.

    Antonio J., Muhammad M. Rahman and John E. Leland, “Numerical Modeling of Conjugate Heat Transfer during Impingement of Free Liquid Jet Issuing from a Slot Nozzle”, Numerical Heat Transfer, Part A, Vol. 38, pp. 45-66, 2000.

    Campbell Jr., J. S., Black, W. Z., Glezer, A., and Hartley, J. G., “Thermal Management of a Laptop Computer With Synthetic Air Microjets”, Proceedings of the 1998 6th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, IEEE, pp. 43-50, 1998.

    Elison, B., and Webb, B. W., “Local Heat Transfer to Impinging Liquid Jets in the Initially Laminar, Transitional, and Turbulent Regimes”, International Journal of Heat and Mass Transfer, Vol. 37, No. 8, pp. 1207-1216, 1994.

    Gardon, R., Akfirat, J.C., “Heat Transfer Characteristics of Impinging Two-dimensional Air Jets”, ASME, J. Heat Transfer, Vol. 88, pp. 101-108, 1966.

    Glauert, M.B., “The Wall Jet”, Journal of Fluid Mechanics, Vol. 1, No. 6, pp. 625-643, 1956.

    Goldstein, R.J. and Timmers, J.F., “Visualization of Heat Transfer from Arrays of Impinging Jets”, Int. J. Heat and Mass Transfer, Vol. 25, No. 12, pp. 1857-1868, 1982.

    Goldstein, R. J., Sobolik, K. A., and Sool, W. S., “Effect of Entrainment on the Heat Transfer to A Heated Circular Air Jet Impinging on a Flat Surface”, Transactions of the ASME, Vol. 112, pp. 608-611, 1990.

    H. Martin, “Heat and Mass Transfer between Impinging Gas Jet and Solid Surfaces”, Advances in Heat Transfer, Vol. 13, pp. 1-60, 1977.

    Jayatilleke, C.L., “The Influence of Prandtl Number and Surface Roughness on the Resistance of the Laminar Sublayer to Momentum and Heat Transfer”, Prog. Heat Mass Transfer 1, 193-329, 1969.

    Jili, L.M. and Dagon, Z., “Experimental Investigation of Single Phase Multi-Jet Impingement Cooling of An Array of Microelectronic Heat Source”, Proceedings of the International Symposium on Cooling Technology for Electronic Equipment, pp. 265-283, 1987.

    Karniadakis, G. E., and Beskok, A., “Microflows Fundamentals and Simulation”, Springer-Verlag, New York, 2001.

    Kennard, E. H., “Kinetic Theory of Gases”, McGraw-Hill Book Co. New York, 1938.

    Kercher, D.M. and Tabakoff, W., “Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air”, J. Eng. Power, Vol. 92, pp. 73-82, 1970.

    Launder, B. E. and Spalding, D. B. “The Numerical Computation of Turbulent Flows”, Computer Method in Applied Mechanics and Engineering , Vol. 3 , pp. 269-289, 1972.

    Liu, X., Lienhard, J. H., and Lombara, J. S., “Convective Heat Transfer by Impingement of Circular Liquid Jets”, Journal of Heat Transfer, Vol. 113, No3, pp. 571-582, 1991.

    Ma, C. F., Zhuang, Y., Lee, S. C., and Gomi, T., “Impingement Heat Transfer and Recovery Effect with Submerged Jets of Large Prandtl Number Liquid-II. Initially Laminar Confined Slot Jets”, International Journal of Heat and Mass Transfer, Vol. 40, No. 6, pp. 1491-1500, 1997.

    Patankar, S. V. , “Numerical Heat Transfer and Fluid Flow “, Chap. 5-6, pp. 79-135, 1980.

    Pence, Paul A. B., James A. Liburdy , “Simulation of Compressible Micro-Scale Jet Impingement Heat Transfer”, Journal of Heat Transfer, Vol. 125, pp. 447-453, 2003.

    Rahman Muhammad M. , Antonio J. Bula and John E. Leland, “Analysis of Transient Conjugate Heat Transfer to a Free Impinging Jet”, Journal of Thermophysics and Heat Transfer, Vol. 14 , No. 3, 2000.

    Rokni Masoud and Bengt Sunden, “Numerical Investigation of Turbulent Forced Convection in Ducts with Rectangular and Trapezoidal Cross-section Area by Using Different Turbulence Models”, Numerical Heat Transfer, Part A, Vol. 30, pp. 321-346, 1996.

    Schaaf, S. A., and Chambre, P. L., “Flow of Rarefied Gases”, Princeton University Press, Princeton, NJ, 1961.

    Sethuram, S., Samimy, M. and Lempert, W, “Planar Doppler Velocimetry in Surpersonic Micro-Flow”, AIAA paper, 2002-0690, January, 2002.

    Sherif, S. A. and Pletcher, R. H., “Measurements of the Thermal Characteristics of Heated Turbulent Jets in Crossflow”, J. Heat Transfer, Vol. 111, pp. 897-903, 1989.

    Siba Erick A. , M. Ganesa-Pillai and Kendall T. Harris A. Haji-Sheikh ,“ Heat Transfer in a High Turbulence Air Jet Impinging Over a Flat Circular Disk”, Journal of Heat Transfer, Vol. 125, pp. 257-264, 2003.

    Tong Albert Y. , “A numerical Study on the Hydrodynamics and Heat Transfer of a Circular Liquid Jet Impinging onto a Substrate”, Taylor & Francis, Numerical Heat Transfer, Part A, Vol. 44, pp. 1-19, 2003.

    Wang , E.N., Zhang, L., Jiang, L., Koo, J.M., Goodson, K.E. and Kenny, T.W., “Micromachined Jets Arrays for Liquid Impingement Cooling of VLSI Chips”, Solid-State Sensor, Actuator and Micro Systems Workshop, pp. 46-49, 2002.

    Wang, X. S., Dagan, Z., and Jiji, L. M., “Heat Transfer Between a Circular Free Impinging Jet and a Solid Surface with Non-Uniform Wall Temperature or Wall Heat Flux-1. Solution for the Stagnation Region”, International Journal of Heat and Mass Transfer, Vol. 32, No. 7, pp. 1351-1360, 1989.

    Wolfshtein, M. W., “The Velocity and Temperature Distribution and Pressure Gradient”, Int. Journal of Heat and Mass Transfer, Vol. 12, pp. 301, 1969.

    Wolfshtein, M., “Some Solutions of the Plane Turbulent Impinging Jet”, ASME Journal of Basic Engineering, pp. 915-922, 1970.

    Womac, D. J., Ramadhyani, S., Incropera F. P., “Correlating Equation for Impingement Cooling of Small Heat Source With Single Circular Liquid Jets”, Transactions of the ASME, Vol. 115, pp.106-115, 1993.

    Y. Becko, “Impingement Cooling - A Review”, Von Karman Institute for Fluid Dynamic, Lecture Series 83, Turbine Blade Cooling, 1976.

    沈志華, “具陣列式加熱器與溫度感測器之熱晶片的製作及微尺寸衝擊冷卻之熱流量測與分析”, 成功大學航空太空工程研究所博士論文, 2003.

    顏國忠, “微噴嘴製作與微衝擊冷卻熱傳實驗研究”, 成功大學航空太空工程研究所碩士論文, 2004.

    下載圖示 校內:2007-07-04公開
    校外:2007-07-04公開
    QR CODE