簡易檢索 / 詳目顯示

研究生: 于逸筑
Yu, Yi-chu
論文名稱: 芝麻酚在大白鼠體內藥物動力學與交互作用
Pharmacokinetics and drug interactions of sesamol in rats
指導教授: 周辰熹
Chou, Chen-hsi
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床藥學研究所
Institute of Clinical Pharmacy
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 83
中文關鍵詞: 多酚類化合物valproic acid葡萄糖醛酸反應第二相反應芝麻酚
外文關鍵詞: sesamol, valproic acid, phase II reaction, polyphenols, glucuronidation
相關次數: 點閱:66下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 簡介: 天然多酚類化合物常見於日常生活的食物中,近年來多酚類化合物的研究愈來愈多,而芝麻酚( sesamol )即為芝麻的酚類成分之一,主要是在芝麻油脫色的步驟或芝麻種子炒焙的過程中由sesamolin產生。芝麻酚於體外試驗證實有清除各種自由基、抗氧化、保護心血管及癌症化學預防作用。芝麻酚在體內代謝主要經由第二相反應( phase II reaction )的葡萄糖醛酸反應( glucuronidation )及硫酸化反應( sulfation )快速且大量地代謝成sesamol glucuronide與sesamol sulfate;其中葡萄糖醛酸反應為臨床藥品常見的代謝途徑,參與的酵素為尿嘧碇雙磷酸轉移酵素( UGT )。具有多種藥理活性的芝麻酚與這類相同代謝途徑的藥品併用是否出現藥物交互作用,值得進一步研究。
    目的: 本研究目的在利用大白鼠動物實驗模式來探討芝麻酚於大白鼠體內動態以及它和臨床常用藥品間的交互作用。為此也將開發一套靈敏的高效液相層析法,同時定量芝麻酚與其主要代謝物sesamol glucuronide及sesamol sulfate。
    方法: 在控制組實驗中,分別以靜脈注射與口服投藥方式給予不同劑量的芝麻酚以研究其藥物動態。在實驗組先給予valproic acid接著給予芝麻酚,採集血液檢品並分析芝麻酚與其主要代謝物,進一步探討其交互作用。
    結果: 實驗結果已成功開發靈敏且能夠同時分析動物體液中的芝麻酚與其主要代謝物的液相層析方法。實際應用至大白鼠體內動力學研究。芝麻酚靜脈注射在劑量5~30 mg/kg呈內線性藥物動力學,口服投予在劑量15~50 mg/kg為非線性藥物動力學,其生體可用率約為10.3~35.2%。與valproic acid 交互作用結果顯示,靜脈注射併用芝麻酚與valproic acid,原型態藥物與芝麻酚代謝物血中濃度皆快速下降;而口服併用芝麻酚與valproic acid,原型態藥物皆有上升的情形,芝麻酚代謝物在一小時以後的血中濃度明顯下降。

    結論: 芝麻酚在大白鼠體內會大量且快速地代謝成sesamol glucuronide與sesamol sulfate,而硫酸化代謝反應的飽和現象可能是口服投予劑量15~50 mg/kg芝麻酚為非線性藥物動力學的原因。併用同為UGTs受質的芝麻酚與valproic acid在大白鼠體內藥物交互作用之研究中,口服給藥的實驗組可以看到valproic acid最高血中濃度增加了約一倍,使血中濃度範圍高於治療濃度範圍,顯示這樣的交互作用會造成valproic acid有不良反應,甚至有發生毒性作用的可能。靜脈給藥的實驗組,反而要注意的是valproic acid血中濃度下降速度變快,會使療效作用時間減少,可能會有癲癇發作的危險。

    Introduction. Natural phenolic compound is abundant in daily foods. Studies in recent years have reported that this class of compounds contains numerous beneficial health effects. Sesamol is one of the phenolic compounds in sesame. It was produced from sesamolin during the bleaching process of sesame oil with acid clay or upon roasting of sesame seed. Several effects of sesamol, including free radical scavenging, antioxidation, preventing cardiovascular diseases, and chemoprevention have been reported by previous in vitro studies.
    Sesamol undergoes rapid and extensive phase II conjugation metabolism and converts to sesamol glucuronide and sesamol sulfate. Glucuronidation is mediated by uridine diphosphateglucuronosyl transferases (UGTs) and is a common metabolic pathway for various drugs. Therefore, it is of great importance to examine the pharmacokinetic interactions between sesamol and drugs that are UGTs substrates.
    Purpose. The aim of this study was to investigate the pharmacokinetics and drug interactions of sesamol in SD rats. A sensitive HPLC method for simultaneous determination of sesamol and its conjugate metabolites in rat plasma was also developed for the purpose.
    Method. Rats received several dose levels of sesamol intravenously and orally in the control groups. In the experiment groups, rats received sesamol after the treatment with valproic acid. Concentrations of sesamol, its metabolites and valproic acid were followed at scheduled intervals after drug administration to characterize their kinetic profiles in rats.

    Result. A sensitive HPLC method for the analysis of sesamol and its major metabolites in biological fluid was developed. The method was applied successfully to pharmacokinetic studies of sesamol in rats. Following bolus injection of 5-30 mg/kg to rats, the disposition of sesamol in plasma was linear. However, nonlinear disposition was evident after oral administration of 15-50 mg/kg of sesamol with the bioavailability of 10.3-35.2%. After co-administration with valproic acid intravenously, the plasma levels of valproic acid,sesamol and its conjugate metabolites were rapidly decreased. In the oral experiment group, the plasma levels of valproic acid and sesamol were increased and the major metabolites of sesamol were decreased one hour later.
    Conclusion. Sesamol undergoes rapid and extensive conjugation metabolism and converts to sesamol glucuronide and sesamol sulfate. Saturation of sulfation might be an explanation for the nonlinear pharmacokinetics of sesamol in the oral control groups. Co-administration of the UGTs substrates sesamol and valproic acid by oral route in rats resulted in a two-fold increase of the maximum concentration of valproic acid with plasma level higher than the therapeutic range. These drug interactions may produce adverse reactions, and even the toxic effects. In the bolus injection group, the interactions caused the rapid decrease of plasma valproic acid concentration to sub-therapeutic levels and may resulte in the development of epileptic seizures.

    中文摘要 i Abstract iii 誌謝 v 目錄 vi 表目錄 ix 圖目錄 x 第壹章 緒論 1 第一節 天然多酚類化合物 1 一、 組成及分類 1 二、 生理功能 3 三、 藥動特性 3 四、 臨床重要性 4 第二節 芝麻酚簡介 6 一、 自然界分布 6 二、 物化性質 6 三、 藥理活性 7 四、 芝麻酚之藥品動態 8 五、 芝麻酚之分析方法 13 第三節 第二相排除反應 15 第貳章 研究目的 19 第參章 實驗材料、儀器及方法 21 第一節 實驗材料 21 一、 實驗動物 21 二、 藥品與試劑 21 第二節 實驗儀器 22 一、 紫外光/可見光分光光度計 22 二、 螢光分光光度計 22 三、 高效能液相層析系統 22 四、 動物實驗手術及檢品處理 23 五、 繪圖及藥動分析軟體 24 第三節 實驗方法 24 一、 芝麻酚紫外光全光譜與螢光全光譜 24 二、 藥品配置與定量分析 25 三、 芝麻酚代謝物確認試驗 27 四、 芝麻酚在大白鼠之藥物動態試驗 28 五、 實驗設計 31 六、 數據解析 32 第肆章 實驗結果 33 第一節 芝麻酚分析方法的開發與確效 33 一、 分析條件開發 33 二、 芝麻酚代謝物確認試驗 40 三、 校正曲線 41 四、 確校評估 45 第三節 芝麻酚於大白鼠體內的藥品動態 48 一、 靜脈注射芝麻酚 48 二、 口服投予芝麻酚 55 三、 芝麻酚與valproic acid交互作用 61 第伍章 討論 69 第一節 芝麻酚分析方法的開發與確效 69 第二節 芝麻酚代謝物確認試驗 71 第三節 芝麻酚在大鼠體內藥品動態 71 一、 靜脈注射芝麻酚 71 二、 口服投予芝麻酚 72 三、 芝麻酚與valproic acid交互作用實驗 74 第陸章 結論 77

    Burckhardt BC and Burckhardt G (2003) Transport of organic anions across the basolateral membrane of proximal tubule cells. Rev Physiol Biochem Pharmacol 146:95-158.
    Chen PR, Lee CC, Chang H and Tsai CE (2005) Sesamol regulates plasminogen activator gene expression in cultured endothelial cells: a potential effect on the fibrinolytic system. J Nutr Biochem 16:59-64.
    Crayford JV and Hutson DH (1980) Comparative metabolism of phenobarbitone in the rat (CFE) and mouse (CF1). Food Cosmet Toxicol 18:503-509.
    Eadie MJ, Hooper WD and Dickinson RG (1988) Valproate-associated hepatotoxicity and its biochemical mechanisms. Med Toxicol Adverse Drug Exp 3:85-106.
    Fukuda YN, M.; Osawa, T.; Namiki, M (1986) Chemical aspects of the antioxidative activity of roasted sesame seed oil, and the effect of using the oil for frying. , . Agric. Biol. Chem. 50:857-862.
    Galli F (2007) Interactions of polyphenolic compounds with drug disposition and metabolism. Curr Drug Metab 8:830-838.
    Garnett WR (2002) Lamotrigine-interaction with other drugs, in Anti-epileptic Drugs, 5th ed. Lippincott Williams & Wilkins, Philadelphia.
    Hirose N, Inoue T, Nishihara K, Sugano M, Akimoto K, Shimizu S and Yamada H (1991) Inhibition of cholesterol absorption and synthesis in rats by sesamin. J Lipid Res 32:629-638.
    Hoehle SI, Knudsen GA, Sanders JM and Sipes IG (2009) Absorption, distribution, metabolism, and excretion of 2,2-bis(bromomethyl)-1,3-propanediol in male fischer-344 rats. Drug Metab Dispos 37:408-416.
    Hollman PC and Katan MB (1998) Bioavailability and health effects of dietary flavonols in man. Arch Toxicol Suppl 20:237-248.
    Hsu DZ, Chen KT, Li YH, Chuang YC and Liu MY (2006) Sesamol delays mortality and attenuates hepatic injury after cecal ligation and puncture in rats: role of oxidative stress. Shock 25:528-532.
    Hsu DZ, Chien SP, Chen KT and Liu MY (2007) The effect of sesamol on systemic oxidative stress and hepatic dysfunction in acutely iron-intoxicated mice. Shock 28:596-601.
    Hsu DZ, Wan CH, Hsu HF, Lin YM and Liu MY (2008) The prophylactic protective effect of sesamol against ferric-nitrilotriacetate-induced acute renal injury in mice. Food Chem Toxicol 46:2736-2741.
    Iida S, Mizuma T, Sakuma N, Hayashi M and Awazu S (1989) Transport of acetaminophen conjugates in isolated rat hepatocytes. Drug Metab Dispos 17:341-344.
    Ismail IM, Dear GJ, Roberts AD, Plumb RS, Ayrtont J, Sweatman BC and Bowers GD (2002) N-O glucuronidation: a major human metabolic pathway in the elimination of two novel anti-convulsant drug candidates. Xenobiotica 32:29-43.
    Jan KC, Ho CT and Hwang LS (2008) Bioavailability and tissue distribution of sesamol in rat. J Agric Food Chem 56:7032-7037.
    Jan KC, Ho CT and Hwang LS (2009) Elimination and metabolism of sesamol, a bioactive compound in sesame oil, in rats. Mol Nutr Food Res.
    Joshi R, Adhikari S, Patro BS, Chattopadhyay S and Mukherjee T (2001) Free radical scavenging behavior of folic acid: evidence for possible antioxidant activity. Free Radic Biol Med 30:1390-1399.
    Kang MH, Naito M, Tsujihara N and Osawa T (1998) Sesamolin inhibits lipid peroxidation in rat liver and kidney. J Nutr 128:1018-1022.
    Kapadia GJ, Azuine MA, Tokuda H, Takasaki M, Mukainaka T, Konoshima T and Nishino H (2002) Chemopreventive effect of resveratrol, sesamol, sesame oil and sunflower oil in the Epstein-Barr virus early antigen activation assay and the mouse skin two-stage carcinogenesis. Pharmacol Res 45:499-505.
    Kawai K, Kawasaki-Tokui Y, Odaka T, Tsuruta F, Kazui M, Iwabuchi H, Nakamura T, Kinoshita T, Ikeda T, Yoshioka T, Komai T and Nakamura K (1997) Disposition and metabolism of the new oral antidiabetic drug troglitazone in rats, mice and dogs. Arzneimittelforschung 47:356-368.
    Kerdpin O, Elliot DJ, Mackenzie PI and Miners JO (2006) Sulfinpyrazone C-glucuronidation is catalyzed selectively by human UDP-glucuronosyltransferase 1A9. Drug Metab Dispos 34:1950-1953.
    Kothare PA and Zimmerman CL (2002) Intestinal metabolism: the role of enzyme localization in phenol metabolite kinetics. Drug Metab Dispos 30:586-594.
    Matsumura Y, Kita S, Morimoto S, Akimoto K, Furuya M, Oka N and Tanaka T (1995) Antihypertensive effect of sesamin. I. Protection against deoxycorticosterone acetate-salt-induced hypertension and cardiovascular hypertrophy. Biol Pharm Bull 18:1016-1019.
    Mazzio EA, Harris N and Soliman KF (1998) Food constituents attenuate monoamine oxidase activity and peroxide levels in C6 astrocyte cells. Planta Med 64:603-606.
    Miners JO and Mackenzie PI (1991) Drug glucuronidation in humans. Pharmacol Ther 51:347-369.
    Miyake Y, Fukumoto S, Okada M, Sakaida K, Nakamura Y and Osawa T (2005) Antioxidative catechol lignans converted from sesamin and sesaminol triglucoside by culturing with Aspergillus. J Agric Food Chem 53:22-27.
    Miyauchi S, Sugiyama Y, Iga T and Hanano M (1988) Membrane-limited hepatic transport of the conjugative metabolites of 4-methylumbelliferone in rats. J Pharm Sci 77:688-692.
    Miyazaki K, Takemoto C, Satoh T, Ueno K, Igarashi T and Kitagawa H (1983) Toxicity and biotransformation of acetaminophen in rat hepatocytes (I). Uptake and release. Res Commun Chem Pathol Pharmacol 39:77-86.
    Moon YJ and Morris ME (2007) Pharmacokinetics and bioavailability of the bioflavonoid biochanin A: effects of quercetin and EGCG on biochanin A disposition in rats. Mol Pharm 4:865-872.
    Nakajima Y, Mizobuchi M, Nakamura M, Takagi H, Inagaki H, Kominami G, Koike M and Yamaguchi T (2004) Mechanism of the drug interaction between valproic acid and carbapenem antibiotics in monkeys and rats. Drug Metab Dispos 32:1383-1391.
    Ogawa K, Yumoto R, Hamada N, Nagai J and Takano M (2006) Interaction of valproic acid and carbapenem antibiotics with multidrug resistance-associated proteins in rat erythrocyte membranes. Epilepsy Res 71:76-87.
    Radominska-Pandya A, Czernik PJ, Little JM, Battaglia E and Mackenzie PI (1999) Structural and functional studies of UDP-glucuronosyltransferases. Drug Metab Rev 31:817-899.
    Reuter S and Mayer D (1995) Transport of dehydroepiandrosterone and dehydroepiandrosterone sulphate into rat hepatocytes. J Steroid Biochem Mol Biol 54:227-235.
    Samara EE, Granneman RG, Witt GF and Cavanaugh JH (1997) Effect of valproate on the pharmacokinetics and pharmacodynamics of lorazepam. J Clin Pharmacol 37:442-450.
    Shimizu S, Akimoto K, Shinmen Y, Kawashima H, Sugano M and Yamada H (1991) Sesamin is a potent and specific inhibitor of delta 5 desaturase in polyunsaturated fatty acid biosynthesis. Lipids 26:512-516.
    Smith PC, Langendijk PN, Bosso JA and Benet LZ (1985) Effect of probenecid on the formation and elimination of acyl glucuronides: studies with zomepirac. Clin Pharmacol Ther 38:121-127.
    Soobrattee MA, Neergheen VS, Luximon-Ramma A, Aruoma OI and Bahorun T (2005) Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutat Res 579:200-213.
    Suja KP, Jayalekshmy A and Arumughan C (2004) Free radical scavenging behavior of antioxidant compounds of sesame (sesamum indicum L.) in DPPH(*) system. J Agric Food Chem 52:912-915.
    Suja KP, Jayalekshmy A and Arumughan C ( 2005) Antioxidant activity of sesame cake extract. Food Chemistry 91:213-219.
    Tagashira MO, Yasuyuki (1998) A new antioxidative 1,3-benzodioxole from Melissa officinalis Planta Medica 64:555-558
    Tseng TH, Tsheng YM and Lee YJ (2001) Cytotoxicity effects of di- and tri-hydroxybenzaldehydes as a chemopreventive potential agent on tumor cells. Toxicology 161:179-187.
    Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR and Ball SE (2004) Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos 32:1201-1208.
    Wright JSJ, E. R. DiLabio, G. A. (2001) Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc 123:1173-1183.
    Yokogawa K, Iwashita S, Kubota A, Sasaki Y, Ishizaki J, Kawahara M, Matsushita R, Kimura K, Ichimura F and Miyamoto K (2001) Effect of meropenem on disposition kinetics of valproate and its metabolites in rabbits. Pharm Res 18:1320-1326.
    Yoshida H and Takagi S ( 1997) Effects of Seed Roasting Temperature and Time on the Quality Characteristics of Sesame (Sesamum indicum) Oil. J Sci Food Agric 75:19-26.
    Zamek-Gliszczynski MJ, Hoffmaster KA, Nezasa K, Tallman MN and Brouwer KL (2006) Integration of hepatic drug transporters and phase II metabolizing enzymes: mechanisms of hepatic excretion of sulfate, glucuronide, and glutathione metabolites. Eur J Pharm Sci 27:447-486.
    萬昌鑫 (2005) 多種受體在芝麻酚引起癲癇發作中扮演的角色. 國立成功大學 環境醫學研究所 碩士論文.

    無法下載圖示 校內:2108-07-28公開
    校外:2108-07-28公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE