簡易檢索 / 詳目顯示

研究生: 沈卉紋
Shen, Hui-Wen
論文名稱: 銦摻雜對氧化鋅奈米結構成長與電性之研究
Growth and Electrical Properties of Indium Doped ZnO Nanostructures
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 111
中文關鍵詞: 氧化鋅摻雜奈米結構電性量測
外文關鍵詞: Zinc Oxide, dope, nanostructure, electrical property measurement
相關次數: 點閱:66下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用化學氣相沉積法(Chemical Vapor Deposition, CVD),以鋅粉與銦粉混合,通入氧氣當反應氣氛,並改變製程溫度於650oC與550oC下成長摻雜銦的氧化鋅結構。分別以掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)和穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)分析成長出摻雜銦的氧化鋅結構表面形貌與微結構分析,配合能量分散分析儀 (Energy Dispersive Spectrometer, EDS)與歐傑電子能譜儀 (Auger Electron Spectrometer, AES),分析結構的元素組成來探討不同成長溫度下摻雜銦濃度的多寡,以及對於氧化鋅結構上的影響。利用電子束微影製作電性量測元件,來探討摻雜銦的氧化鋅結構導電性質,利用變溫量測電性方式探討電阻對溫度的變化來探究半導體中載子傳輸行為,最後利用Metal oxide semiconductor field effect transistor (MOSFET)結構,配合側向閘極電極結構來探討摻雜銦氧化鋅結構的載子濃度,並與未摻雜的氧化鋅奈米線作為比較,可證實化學氣相沉積法在較低溫的製程下銦可成功摻雜進入氧化鋅內,並可藉由溫度的調控改變銦的摻雜量使氧化鋅有不同的導電性質,並影響到氧化鋅結構的方向成長。

    In this research, various Indium doped ZnO nanostructures were synthesized on Si substrate by chemical vapor deposition (CVD). The mixed powder of zinc and indium were used as source and O2 gas were used as a reaction gas. Growth temperature were set at 650oC and 550oC to grow indium doped ZnO structures. The morphology and microstructure of the products were analyzed by Scanning Electron Microscopy and Transmission Electron Microscopy, Energy Dispersive Spectrometer or Auger Electron Spectrometer were employed to analyze elemental distribution and the influence of growth temperature on indium concentration and ZnO structures is discussed. The electrical properties of ZnO nanostructure were measured where pattern were made by e-beam lithography. Temperature dependence of resistance of nanostructure at various temperatures was measured and discussed in relation to their nanowire Metal oxide semiconductor field effect transistor with side gate electrodes which developed by e-beam lithography to measure carrier concentrations of different ZnO structures by using field effects. By comparing with undoped ZnO nanowires, doped ZnO structures were confirmed to provide higher carrier concentration. Therefore CVD process is demonstrated to dope indium into ZnO successfully and increase carrier concentration. The growth direction of ZnO nanostructures can also be varied by growth temperature.

    中文摘要.....I Abstract.....II 誌謝.....IV 目錄.....V 表目錄.....VIII 圖目錄.....VIII 第一章 前言及研究目的.....1 1.1前言.....1 1.2奈米線元件應用.....2 1.3研究動機與目的.....3 第二章 基礎理論與文獻回顧.....7 2.1氧化鋅簡介.....7 2.1.1氧化鋅的晶體結構與特性.....7 2.1.2氧化鋅能帶結構.....10 2.1.3氧化鋅的摻雜.....11 2.1.4氧化鋅摻雜銦.....13 2.1.5氧化鋅表面能.....16 2.2化學氣相沉積法.....19 2.3奈米結構成長機制.....21 2.3.1氣-液-固(Vapor-Liquid-Solid, VLS) 機制.....21 2.3.2氣-固凝核(Vapor-Solid, VS)機制.....24 2.4 Field Effect Transistor原理.....25 2.4.1金-氧-半場效電晶體(MOSFET).....25 2.4.2 MOSFET電流電壓關係.....28 2.4.3氧化鋅MOS元件目前研究現況.....33 2.5金屬絕緣體轉換.....35 第三章 實驗步驟與分析儀器.....37 3.1實驗流程.....37 3.2摻雜銦氧化鋅奈米結構的合成.....38 3.2.1基板清洗.....38 3.2.2化學氣相沉積法成長摻雜銦氧化鋅奈米結構.....38 3.3電性量測.....40 3.4結構與元素分析.....42 3.4.1掃描式電子顯微鏡(Scanning Electron Microscopy).....42 3.4.2穿透式電子顯微鏡(Transmission Electron Microscopy).....44 3.4.3 X光繞射儀(X-ray diffraction).....46 3.4.4 歐傑電子能譜儀(Auger Electron Spectrometer, AES).....48 3.4.5陰極射線螢光 (Cathodoluminescence, CL).....49 3.4.6物理性質量測系統 (Physical Property Measurement System) .....50 第四章 結果與討論.....51 4.1製程溫度對氧化鋅奈米結構的影響.....51 4.2不同溫度摻雜銦的氧化鋅結構成長機制.....59 4.2.1摻雜銦的氧化鋅緞帶成長機制.....59 4.2.2摻雜銦的氧化鋅奈米線成長機制.....61 4.3摻雜銦的氧化鋅緞帶結構電性探討.....71 4.3.1使用四點量測方式探討基本導電性質.....71 4.3.2 MOSFET結構電性量測.....74 4.3.3利用變溫電性來探討摻雜銦的氧化鋅緞帶結構傳導性質.....76 4.4 550oC製成溫度下三種奈米線電性探討.....82 4.4.1摻雜銦的氧化鋅六角形奈米線MOS結構電性量測.....82 4.4.2摻雜銦的氧化鋅花瓣形奈米線MOS結構電性量測.....88 4.4.3摻雜銦的氧化鋅圓形奈米線MOS結構電性量測.....92 4.4.4比較三種不同形貌摻雜銦的氧化鋅奈米線電性量測結果.....96 第五章 結論.....106 參考文獻.....108

    [1] P. Yang, R. Yan, M. Fardy, nano letters, 10, 1529 (2010)
    [2] B. Tian, X. Zheng, C. M. Lieber, nature, 449, 885 (2007)
    [3] E. Garnett, P. Yang, nano letters, 10, 1082 (2010)
    [4] Y. Huang, X. Duan, C. M. Lieber, small, 1, 142 (2005)
    [5] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, science, 292, 1897 (2001)
    [6] Z. L. Wang, J. Song, science, 312, 242 (2006)
    [7] X. J. Zheng, B. Yang, B. Yuan, applied physics letters, 95, 221106 (2005)
    [8] K. J. Kim, Y. R. Park, applied physics letters, 78, 475 (2001)
    [9] L. Xu, Y. Su, Y. Chen, H. Xiao, S. Li, journal of physical chemical B, 110,6637 (2006)
    [10] S. Lin, Z. Ye, H. He, Y. Zeng, H. Tang, B. Zhao, L. Zhu, journal of crystal Growth, 306, 339 (2007)
    [11] J. Jie, G. Wang, X. Han, J. G. Hou, journal of physics chemical B, 108,17027 (2004)
    [12] B. Alemán, J Piqueras, applied physics letters, 95, 013111 (2009)
    [13] N. Pan, H. Xue, X. Wang, J. Hou, Eur. J. Inorg. Chem., 4344 (2010)
    [14] X. Y. Kong, Z. L. Wang, nano letters, 3, 1625 (2003)
    [15] R. S. Thompson, D. Li, C. M. Witte, J. G. Lu, nano letters, 9, 3991 (2009)
    [16] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, H. Morkoç, Journal of applied Physics, 98, 041301 (2005)
    [17] Z. L. Wang, Appl. Phys. A, 88, 7 (2007)
    [18] S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Superlattices and Microstructures, 34, 3 (2003)
    [19] T. Minami, semiconductor science and technology, 20, s35 (2005)
    [20] A. Kobayashi, O. F. Sankey, J. D. Dow, physical review B, 28, 2 (1983)
    [21] M. D. McCluskey, S. J. Jokela, journal of applied physics, 106, 071101 (2009)
    [22] H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, applied physics Letters, 77, 3761 (2000)
    [23] H. Agura, A. Suzuki, T. Matsushita, T. Aoki, M. Okuda, thin solid films, 445, 263 (2003)
    [24] S. S. Shinde, P. S. Shinde, C. H. Bhosale, K. Y. Rajpure, Journal of physics D:applied physics, 41, 105109 (2008)
    [25] H. P. He, L. Wang, X. H. Li, applied physics letters, 90, 023104 (2007)
    [26] S. F. J. Cox, J. S. Lord, physical review letters, 86, 2601 (2001)
    [27] G. D. Yuan, W. J. Zhang, J. A. Zapien, Y. H. Leung, L., S. T. Lee, nano Letters, 8, 2591 (2008)
    [28] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, M. Kawasaki, nature material, 4, 1284 (2005)
    [29] W. Lim, Y. L. Wang, F. Ren, S. J. Peartona, Electrochemical and Solid-State Letters, 10, H267 (2007)
    [30] Y. S. Rim, D. H. Kim, K. H. Kim, Mol. Cryst. Liq. Cryst., 514, 99 (2009)
    [31] H. K. Kim, J. H. Kwon, Applied Physics Letters, 88, 012103 (2006)
    [32] P. Nunesa, E. Fortunatoa, P. Tonelloa, Vacuum, 64, 281 (2002)
    [33] K. J. Kima, Y. R. Park, Applied Physics Letters, 78, 475 (2001)
    [34] L. M. Li, C. C. Li, T. H. Wang, Nanotechnology, 18, 225504 (2007)
    [35] K. W. Liu, M. Aono, journal of applied physics, 108, 043516 (2010)
    [36] S. Lin, H. He, Z. Ye, B. Zhao, J. Huang, journal of applied physics, 104 114307 (2008)
    [37] Chao Liu, Haiping He, Zhizhen Ye, and Lanlan Chen, journal of applied physics, 109, 053507 (2011)
    [38] M. Schirra, R. Schneider, A. Reiser, C. E. Krill, K. Thonke, physical review B, 77, 125215 (2008)
    [39] M. N. Jung, J. H. Chang, Applied Physics Letters, 94, 041906 (2009)
    [40] C. W. Zou1, J. M. Bian, Applied Physics Letters, 95, 126101, (2009)
    [41] G. Wulff and Z. Kristallogr, Mineral., 34, 449 (1901)
    [42] B. Meyer and D. Marx, physical review B, 67, 035403 (2003)
    [43] Wen-Jun Li, Er-Wei Shi, Wei-Zhuo Zhong, Zhi-Wen Yin, journal of crystal growth, 203, 186 (1999)
    [44] J. Liu, Y. Zhang, J. Qi, Y. Huang, X. Zhang, Q. Liao, materials letters, 60, 2623 (2006)
    [45] J. Qi, Y. Zhang, Q. Liao, J. Liu, applied physics letters, 89, 252115 (2006)
    [46] J. Jie, G. Wang, G. Li, J.G. Hou, chemical physics letters, 387, 466 (2004)
    [47] Y. Gua, J. Qib, Y. Zhangc, Materials Science Forum, 561, 1861 (2007)
    [48] J. J. Wu, S. C. Liu, advanced materials, 14, 215 (2002)
    [49] K. F. Jensen and W. Kern, in Thin Film Processes II, Eds. J. L. Vossen and W. Kern, Academic Press, New York (1991)
    [50] A. M. Morales, C. M. Lieber, science, 279, 208 (1998)
    [51] Y. Wu, P. Yang, journal of American chemical society, 123, 3165 (2001)
    [52] S.S Brenner, G.W Sears, acta metallurgica, 4, 268 (1956)
    [53]P. Yang, C.M. Lieber, J. Mater. Res., 12, 2981 (1997)
    [54] S. M. SZE, semiconductor devices, physics and technology, (1985)
    [55] D. A. Neamen, semiconductor physics and devices, (2003)
    [56] S. M. SZE, modern semiconductor device physics, (1998)
    [57] S. J. Tans, A. R. M. Verschueren, C. Dekker, nature, 393, 49 (1998)
    [58] Y. Cui, C. M. Lieber, science, 291, 851 (2001)
    [59] Y. Cui, X. Duan, J. Hu, C. M. Lieber, the journal of physical chemistry B, 104, 5213 (2000)
    [60] Y. Huang, X. Duan, Y. Cui, C. M. Lieber, nano letters, 2, 101 (2002)
    [61] S. Ju, A. Facchetti, Y. Xuan, J. Liu, F. Ishikawa, P. Ye, C. Zhou, D. B. Janes, nature technology, 2, 378 (2007)
    [62] M. S. Arnold, P. Avouris, Z. W. Pan, Z. L. Wang, journal of physics chemical B, 107, 659 (2003)
    [63] J. Goldberger, D. J. Sirbuly, P. Yang, journal of physics chemical B, 109, 9 (2005)
    [64] H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, M. Meyyappan, nano letters, 4, 1247 (2004)
    [65] S. N. Cha, J. E. Jang, G. A. J. Amaratunga, applied physics letters, 89, 263102 (2006)
    [66] M. Choe, G. Jo, J. Maeng, G. Wang, W. Park, T. Lee, journal of applied physics, 107, 034504 (2010)
    [67] Y. Liu, Z. Zhang, H. Xu, L. Zhang, Z. Wang, W. Li, Li Ding, journal of physical chemical C, 113, 16796 (2009)
    [68] D. J. Kim, J. H. Hyung, Sang Kwon Lee, journal of electronic materials, 39, 563 (2010)
    [69]汪建民, 材料分析Materials Analysis, (1998)
    [70]陳力俊,材料電子顯微鏡學, (1994)
    [71]B. G. Yacobi, D. B. Holt, Cathodolumiescence Miscroscopy of Inorganic Solids, Plenum Press, New York 1990
    [72]中山大學貴儀中心物理量測系統
    [73] K. Keem, D. Y. Jeong, S. Kim, nano letters, 6, 1454 (2006)
    [74] L. Liao, J. C. Li,a, D. F. Wang, W. Z. Song, applied physics letters, 86, 083106 (2005)
    [75] Y. B. Li, Y. Bando, D. Golberg, applied physics letters, 84, 3603 (2004)
    [76] C. Li, Y. Yang, X. W. Sun, nanotechnology, 18, 135604 (2007)
    [77] X.Q. Meng, D.X. Zhao, Chemical physical letters, 407, 91 (2005)
    [78] K Ellmer, J. Phys. D: Appl. Phys., 34, 3097 (2001)
    [79] A. P. Roch, D. F. Williams, Physical Review B, 25, 7836 (1982)
    [80] K. Keem, D. Y. Jeong, S. Kim, nano letters, 6, 1454 (2006)

    無法下載圖示 校內:2021-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE