簡易檢索 / 詳目顯示

研究生: 黃恩哲
Huang, En-che
論文名稱: 具最大功率追蹤與充電管理之太陽能充電器之研製
Investigation of A Solar Charger with Maximum Power Point Tracking and Charge Management
指導教授: 林鐘烲
Lin, Jong-Lick
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 121
中文關鍵詞: 蓄電池最大功率追蹤太陽電池
外文關鍵詞: battery, MPPT, solar cell
相關次數: 點閱:83下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年由於能源危機與環保意識的抬頭,再生能源成為目前發展的趨勢。太陽能無污染,且取之不盡、用之不竭,具有發展潛力,故太陽能發電的研究日益受到重視。本論文將以太陽能電池與蓄電池為研究主題,探討如何應用最大功率追蹤技術,以提升太陽能發電系統之效率,並分析蓄電池充放電管理之法則。
    本論文首先介紹太陽能電池發電原理與等效電路模型,吾人應用電路理論,分析太陽能電池 特性曲線,並探討氣候環境對電氣參數之影響。由於太陽能板成本高,轉換效率低,可應用最大功率追蹤技術,有效地提升太陽能使用率與降低系統成本。論文中將回顧數種常用之最大功率追蹤法則。此外,吾人將應用控制方塊圖,推導太陽能充電系統的小信號數學模式,並根據古典控制理論設計控制器,使太陽能板具有最大的輸出功率。其次,由電化學理論介紹蓄電池之基本特性與工作原理,並應用電化學阻抗分析法,瞭解電池等效電路模型。再根據Mass充電法則,探討各種蓄電池充電方法之優缺點。此外,提出電池管理技術,有效地控制蓄電池充放電狀態,避免蓄電池有過充或過放電的現象,以增長其使用壽命。
    最後,吾人應用軟體IsSpice,模擬非理想性電阻對太陽能電池輸出之影響,並實際量測特性曲線,以驗證理論之正確性。接著以梯度法為基礎,使用微處理器8051配合軟體程式,實作最大功率追蹤器,以達到最大功率追蹤的目的。

    Due to energy crisis and escalating environmental protection awareness in the recent years, the development of renewable energy has become a tendency at present. The solar energy is an inexhaustible and pollution-free energy source with high development potential. Therefore, the research about photovoltaic generation was got more and more attention. The solar cell and storage battery are investigated in this thesis. The maximum power point tracking (MPPT) technique is applied to improve the overall efficiency of the solar system. The rules of charging and discharging management are also presented.
    The characteristics and equivalent circuit model of a solar cell are introduced first. According to the circuit model, the characteristic curves of a solar cell can be analyzed by circuit theory. Moreover, the influences of the climate on the electric parameters are also presented. Because the price of a solar module is expensive and conversion efficiency is low, the MPPT technique is of essence to reduce the cost and promote the efficiency. Several MPPT rules are compared in this thesis. Additionally, the control block diagram is adopted to derive the small-signal model of the solar system. The PI controller, based on classical control theory, is designed to achieve the maximum output power.
    To proceed, the electrochemistry mechanism is employed to analyze the characteristics of the battery and its working principle. By means of electrochemical impedance spectroscopy, battery equivalent circuit model is derived by Randles. The pluses and minuses of various charging methods are mentioned and compared according to Mass law. Moreover, the battery management technique is presented to avoid the over charging and discharging phenomena of the storage battery. The lifespan of the battery is thereby prolonged effectively.
    Finally, IsSpice sofeware is used to simulate the influence of the output resistances of the solar cell. Then, the theoretical analysis is validated by the measurements of characteristic curves of the solar module. A maximum power point tracker, based on gradient method, is implemented by microprocessor 8051 to achieve MPPT purpose.

    中文摘要 I 英文摘要 II 目錄 III 圖表目錄 VI 第一章 緒論 1-1 1.1 研究背景與動機 1-1 1.2 太陽能電池發展史 1-2 1.3 電池簡介 1-3 1.4 相關論文回顧 1-4 1.5 論文研究方向 1-5 1.6 本文架構 1-5 第二章 太陽能電池之介紹 2-1 2.1 太陽能電池基本原理 2-1 2.2 太陽能電池等效電路 2-5 2.3 太陽能電池電氣特性 2-9 2.3.1 開路電壓與短路電流 2-9 2.3.2 輸出功率 2-10 2.3.3 溫度對太陽能電池之影響2-10 2.3.4 日照對太陽能電池之影響2-11 2.3.5 填充因子 2-12 2.3.6 旁路與防逆流二極體 2-13 2.3.7 直流工作點分析 2-16 2.4 太陽能光伏發電系統 2-17 2.4.1 獨立型發電系統 2-17 2.4.2 市電併聯型發電系統 2-18 附錄2A 太陽能模組規格 2A-1 第三章 最大功率追蹤法則 3-1 3.1 最大功率追蹤 3-2 3.1.1 最大功率追蹤之緣由 3-2 3.1.2 最大功率傳輸 3-4 3.2 最大功率點追蹤方法分析 3-7 3.2.1 定電壓追蹤法 3-7 3.2.2 開路電壓法 3-8 3.2.3 擾動觀察法 3-8 3.2.4 梯度法 3-10 3.2.5 增量電導法 3-11 第四章 最大功率追蹤系統分析 4-1 4.1 小信號數學模式 4-2 4.2 控制器設計與實現 4-5 4.3 最大功率追蹤器之實現 4-7 4.3.1 最大功率追蹤器組成元件 4-8 4.3.2 最大功率追蹤器工作原理 4-10 第五章 電池概述 5-1 5.1 電池工作原理概述 5-1 5.1.1 電池基本組成元件 5-1 5.1.2 氧化還原反應 5-2 5.1.3 工作原理 5-3 5.2 蓄電池規格參數 5-4 5.3 常見之蓄電池 5-6 5.3.1 鉛酸電池 5-6 5.3.2 鋰電池 5-8 5.3.3 鹼性蓄電池:鎳氫電池 5-9 5.4 電池之等效電路模型 5-10 5.4.1 極化作用 5-10 5.4.2 電化學阻抗分析 5-11 5.4.3 電池等效電路模型 5-13 第六章 蓄電池充電法則 6-1 6.1 充電管理法則 6-1 6.2 各種充電法 6-3 6.3 各類電池充電法 6-7 6.3.1 鉛酸電池 6-7 6.3.2 鋰電池 6-7 第七章 太陽能發電系統之電池管理分析 7-1 7.1 太陽能發電系統設計考量 7-2 7.2 太陽能系統蓄電池之問題 7-3 7.3 具電池管理技術之太陽能發電系統 7-4 7.3.1 太陽能發電系統工作階段 7-4 7.3.2 電池管理技術 7-6 7.4 電池管理模式分析 7-7 7.4.1 蓄電池充電模式 7-7 7.4.2 開關切換模式 7-9 7.4.3 系統操作模式 7-10 第八章 實作結果與心得 8-1 8.1 實作結果 8-1 8.1.1 模擬太陽能電池之特性曲線 8-1 8.1.2 實際量測太陽能電池特性曲線 8-3 8.1.3 最大功率追蹤與電池管理 8-5 8.2 軟體程式說明 8-7 8.3 實作心路歷程 8-12 第九章 結論與未來展望 9-1 9.1 結論 9-1 9.2 未來展望 9-1 參考文獻 自述

    Boico, F., B. Lehman and K. Shujaee, “Solar Battery Chargers for NiMH Batteries,” IEEE Trans. Power Electronics, Vol. 22, No. 5, pp. 1600-1609, 2007.
    Baudry, P., M. Neri, M. Gueguen, and G. Lonchampt, “Electro-thermal Modelling of Polymer Lithium Batteries for Starting Period and Pulse Power,” Journal of Power Source, Vol. 54, pp. 393-396, 1995.
    Casacca, M. A. and Z. M. Salameh, “Determination of Lead-acid Battery Capacity via Mathematical Modeling Techniques,” IEEE Trans. Energy Conversion, Vol. 7, No. 3, pp. 442-446, 1992.
    Cougo, B., P. C. Cortizo, F. F. Rocha, G. G. B. Coelho, P. F. Seixas, and L. de V. B. Machado Neto, “A Photovoltaic System for Remote Fault Detection in Distribution Lines Using a Novel MPPT Algorithm,” IEEE ISIE, pp. 2397-2402, 2007.
    Chiang, S. J., K. T. Chang, and C. Y. Yen, “Residential Eenergy Storage System,” IEEE Trans. Ind. Electron., Vol. 45, No. 3, pp. 385-394, 1998.
    Ceraolo Massimo, “Accurate Electrical Battery Model Capable of Predicting Runtime and Performance,” IEEE Trans. Power Systems, Vol. 15, No. 4, pp. 1184-1190, 2000.
    Chen, M. and G. A. Rincon-Mora, “Accurate Electrical Battery Model Capable of Predicting Runtime and Performance,” IEEE Trans. Energy Conversion, Vol. 21, No. 2, pp. 504-511, 2006.
    Chan, H. L. and D. Sutanto, “A New Battery Model for Use with Battery Energy Storage System and Electric Vehicles Power Systems,” in Proc. IEEE-PES Winter Meeting, pp. 470-475, 2000.
    Chung, H. S. H., K. K. Tse, S. Y. R. Hui, C. M. Mok, and M. T. Ho, “A Novel Maximum Power Point Tracking Technique for Solar Panels Using a SEPIC or Cuk Converter,” IEEE Trans. Power Electronics, Vol. 18, No. 3, pp. 717-724, 2003.
    Czarkowski, D. and M. K. Kazimierczuk, “Static- and Dynamic-circuit Models of PWM Buck-derived DC/DC Converters,”in Proc. Inst. Elect. Eng., pt. G, Vol. 139, pp. 669-679, 1992.
    Dürr, Matthias; Andrew Cruden, Sinclair Gair, J. R. McDonald, “Dynamic Model of a Lead-acid Battery for Use in a Domestic Fuel Cell System,” Journal of Power Source, Vol. 161 pp. 1400-1411, 2006.
    Egiziano, L., N. Femia, G. Lisi, G. Petrone, G. Spagnuolo, and M. Vitelli, “Design and Optimization of a Maximum Power Point Tracking Controller for a PV Battery Ccharger,” IEEE ISIE, pp. 2426-2431, 2007.
    Gow, J. A. and C. D. Manning, “Development of a Photovoltaic Array Model for Use in Power-electronics Simulation Studies,” in IEE Proc. Electr. Power, Vol.146, No. 2, 1999.
    Hua, C., J. Lin, and C. Shen, “Implementation of a DSP Controlled Photovoltaic System with Peak Power Tracking,” IEEE Trans. Ind. Electron., Vol. 45, No. 1, pp. 99-107, 1998.
    Hussein, K. H., I. Muta, T. Hshino, and M. Osakada, “Maximum Photovoltaic Power Ttracking: an Algorithm for Rapidly Changing Aatmospheric Conditions,” in Proc. Inst. Elect. Eng. Gen., Transm. Distrib., Vol. 142, No. 1, pp. 59-64, 1995.
    Huynh, P. and B. H. Cho, “Design and Analysis of a Microprocessor-controlled Peak Power Tracking System,” IEEE Trans. Aerosp. Electron. Syst., Vol. AES-32, No. 1, pp. 182-190, 1996.
    Huet, F, “A Review of Impedance Measurements for Determination of the State-of-charge or State-of-health of Secondary Batteries,” Journal of Power Source, Vol. 70 pp. 59-69, 1998.
    Hermann, W., W. Wiesner, and W. Vaa en, “Hot Spot Investigations on PV Modules-new Concepts for Test Standard and Consequences for Module Design with Respect to Bypass Diodes,” in Proceedings of the 26th IEEE PV Specialists Conference, pp. 1129-1132, 1997.
    Kim, S. J. and B. H. Cho, “Analysis of Spacecraft Battery Charger Systems,” IEEE IECEC, pp. 365-372, 1990.
    Koutroulis, E., K. Kalaitzakis, and N. Voulgaris, “Development of a Microcontroller-based Photovoltaic Maximum Power Point Tracking Control System,” IEEE Trans. Power Electronics, Vol. 16, No. 1, pp. 46-54, Jan. 2001.
    Masoum, M. A., S. M. Badejani, and E. F. Fuchs, “Microprocessor controlled New Class of Optimal Battery Chargers for Photovoltaic Applications,” IEEE Trans. Energy Conversion, Vol. 19, No. 3, pp. 599-606, 2007.
    Salameh, Z., M. A. Casacca, and W. Lynch, “A Mathernatical Model for Lead-Acid Batteries,” IEEE Trans. Energy Conversion, Vol. 7, No. 1, pp. 93-97, 1992.
    Robinson, R. S., “On-line Battery Testing: a Reliable Method for Determining Battery Health,” in Proceedings of the 18th International IEEE Telecommunications Energy Conference, pp. 654-661, 1996.
    Su, J. H., J. J. Chen, and D. S. Wu, “Learning Feed-back Controller Design of Switching Converters via MATLAB/SIMULINK,” IEEE Trans. Education, Vol. 45, No. 4, pp. 307-315, 2002.
    Schooling, S. P., P. E. Wellstead, M. B. Zarrop, and N. D. Scott, “A System Identification Approach to the Analysis of VRLA Batteries,” in Proceedings of the 14th Annual IEEE Battery Conference on Applications and Advances, pp. 259-264, 1999.
    Tariq, A. and M. S. J. Asghar, “Development of an Analog Maximum Power Point Tracker for Photovoltaic Panel,” IEEE PEDS, pp. 251-255, 2005
    Walker, G., “Evaluating MPPT Converter Topologies Using A MATLAB PV Model,” J. Elect. Electron. Eng. Australia, Vol. 21, No. 1, pp. 49-56, 2001.
    Woff, S. M. M. and J. H. R. Enslin, “Economical, PV Maximum Power Point Ttracking Regulator with Simplistic Controller,” IEEE PESC, pp. 581-587, 1993.
    林成濤,仇斌,陳全世, “電動汽車電池非線性等效電路模型的研究,” Automotive Engineering, Vol. 28, No.1 pp. 38-42, 2006.
    [王順忠98] 王順忠,電力電子學,東華書局,1998 年2 月初版。
    [林曾97] 林志一、曾龍圖,IsSpice Version 8 交談式電路模擬分析與應
    用,全華科技圖書股份有限公司,1997 年11 月二版。
    [鄭培璿99] 鄭培璿,IsSpice在電力電子與電子轉換器上的應用,全華科技
    圖書股份有限公司,1999 年9 月初版。

    下載圖示 校內:2011-08-13公開
    校外:2011-08-13公開
    QR CODE