簡易檢索 / 詳目顯示

研究生: 黃煜雅
Huang, Yu-Ya
論文名稱: 二氧化矽包覆碳六十和β-NaYF4:Er上轉換奈米粒子應用於第三生物視窗之光動力治療
Silica Coated Fullerene and Er3+ Doped β-NaYF4 Upconversion Nanorods for Photodynamic Therapy in the Third Biological Window
指導教授: 葉晨聖
Yeh, Chen-Sheng
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 57
中文關鍵詞: 第三生物視窗上轉換奈米粒子碳六十光動力治療
外文關鍵詞: third biological window, upconversion nanorods, fullerene, photodynamic therapy
相關次數: 點閱:75下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,第三生物視窗於生物醫學掀起一陣旋風,因其不易被生物組織散射具有高穿透深度之優點,可以抵達生物體更深層組織,因此被廣泛地應用於生物影像。
    本研究設計以二氧化矽包覆 NaYF4:Er@NaYF4 和碳六十的奈米粒子。NaYF4:Er@NaYF4 上轉換奈米粒子中的 Er3+ 同時作為吸光體 和放光體,可吸收第三生物視窗中的1550 nm波段,產生多波長之放光,進而結合高單態氧產率的碳六十,並包覆上二氧化矽。藉由上轉換奈米粒子 (提供者) 和碳六十 (接收者) 之間的螢光共振能量轉移可產生大量之單態氧,未來則可應用於光動力治療。

    In recent years, the third biological window (NIR-III: 1500-1800 nm) has drawn much attention and been widely used in imaging applications as for its deep penetration depth into biological tissues.
    In this work, we present a silica coated NaYF4:Er@NaYF4 upconversion nanorods and fullerene (CS-UCNRs, C60@SiO2) . Er3+ is both served as sensitizer and emitter aiming to harvest pump at 1550 nm and promote multiple emission bands. The singlet oxygen generation yield can even achieve 100% in combination with fullerenes. Based on Förster resonance energy transfer (FRET) in which UCNRs as donors and fullerene as acceptors, further promote the singlet oxygen generation yield facilitating the application to photodynamic therapy.

    第一章、緒論 1 1-1癌症治療 1 1-1-1光動力治療 2 1-1-2光動力治療之歷史 2 1-1-3光動力治療之原理 2 1-1-4破壞癌細胞之機制 4 1-1-5光動力治療的限制 5 1-2近紅外光區 5 1-2-1第三生物視窗 6 1-3上轉換奈米材料 7 1-3-1上轉換奈米材料之放光機制 9 1-4碳六十 10 1-4-1碳六十之光動力治療 11 1-5研究動機 12 第二章、實驗部分 14 2-1實驗藥品 14 2-2實驗器材 16 2-3實驗步驟 18 2-3-1上轉換奈米粒子之製備 18 2-3-2內核-外殼上轉換奈米材料之製備 19 2-3-3上轉換奈米粒子脫去表面官能基之製備 20 2-3-4修飾羧基之碳六十之製備 20 2-3-5修飾之碳六十包覆上轉換奈米材料之製備 21 2-3-6 CS-UCNRs@C60-COOH 中 C60-COOH 含量之測定 22 2-3-7二氧化矽包覆上轉換奈米材料和碳六十之製備 22 2-3-8 CS-UCNRs, C60@SiO2 之表面修飾 22 2-3-9單態氧之偵測 23 2-3-10 CS-UCNRs, C60@SiO2中C60含量之測定 23 第三章、結果與討論 24 3-1 NaYF4:Er摻雜比例之上轉換效率比較 24 3-2 NaYF4:Er@NaYF4摻雜比例之上轉換效率比較 25 3-3 NaY0.9F4:Er0.1@NaYF4 殼層厚度之上轉換效率之比較 27 3-4 NaY0.9F4:Er0.1@NaYF4 結構和光學性質之探討 29 3-5脫去表面官能基之上轉換奈米粒子之鑑定 34 3-6修飾羧基之碳六十之鑑定 36 3-7修飾羧基之碳六十包覆上轉換奈米材料之鑑定 39 3-8修飾之碳六十包覆上轉換奈米材料之碳六十之包覆量 40 3-9修飾之碳六十包覆上轉換奈米材料之上轉換光譜 42 3-10修飾之碳六十包覆上轉換奈米材料之單態氧產生 42 3-11二氧化矽包覆上轉換奈米材料之結構和光學性質 43 3-12二氧化矽包覆上轉換奈米材料和碳六十之結構與光學性質 46 3-13 CS-UCNRs, C60@SiO2之C60包覆量 48 3-14 CS-UCNRs, C60@SiO2 之單態氧產生 49 3-15 CS-UCNRs, C60@SiO2 之表面修飾之鑑定 50 第四章、結論 52 參考文獻 53

    1. Luo, C. H.; Huang, C. T.; Su, C. H.; Yeh, C. S., Bacteria-Mediated Hypoxia-Specific Delivery of Nanoparticles for Tumors Imaging and Therapy. Nano Letters, 16 (6), 3493-3499, 2016.
    2. Yin, M.; Ju, E.; Chen, Z.; Li, Z.; Ren, J.; Qu, X., Upconverting nanoparticles with a mesoporous TiO(2) shell for near-infrared-triggered drug delivery and synergistic targeted cancer therapy. Chemistry, 20 (43), 14012-7, 2014.
    3. Ferlay, J.; Shin, H. R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D. M., Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer, 127 (12), 2893-917, 2010.
    4. Levy, J. G.; Obochi, M., New Applications in Photodynamic Therapy Introduction. Photochemistry and Photobiology, 64 (5), 737-739, 1996.
    5. Daniell, M. D.; Hill, J. S., A HISTORY OF PHOTODYNAMIC THERAPY. Aust. N.Z. J. Surg., 61 (5), 340-348, 1991.
    6. Felsher, D. W., Cancer revoked: oncogenes as therapeutic targets. Nat Rev Cancer, 3 (5), 375-80, 2003.
    7. Castano, A. P.; Demidova, T. N.; Hamblin, M. R., Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagnosis and Photodynamic Therapy, 1 (4), 279-293, 2004.
    8. Garcia-Diaz, M.; Huang, Y. Y.; Hamblin, M. R., Use of fluorescent probes for ROS to tease apart Type I and Type II photochemical pathways in photodynamic therapy. Methods, 109, 158-166, 2016.
    9. Ding, H.; Yu, H.; Dong, Y.; Tian, R.; Huang, G.; Boothman, D. A.; Sumer, B. D.; Gao, J., Photoactivation switch from type II to type I reactions by electron-rich micelles for improved photodynamic therapy of cancer cells under hypoxia. J Control Release, 156 (3), 276-80, 2011.
    10. Lucky, S. S.; Soo, K. C.; Zhang, Y., Nanoparticles in photodynamic therapy. Chem Rev, 115 (4), 1990-2042, 2015.
    11. Castano, A. P.; Demidova, T. N.; Hamblin, M. R., Mechanisms in photodynamic therapy: part two—cellular signaling, cell metabolism and modes of cell death. Photodiagnosis and Photodynamic Therapy, 2 (1), 1-23, 2005.
    12. Niedre, M.; Patterson, M. S.; Wilson, B. C., Direct Near-infrared Luminescence Detection of Singlet Oxygen Generated by Photodynamic Therapy in Cells In Vitro and Tissues In Vivo. Photochemistry and Photobiology, 75 (4), 382–391, 2002.
    13. Moan, J.; Berg, K., THE PHOTODEGRADATION OF PORPHYRINS IN CELLS CAN BE USED TO ESTIMATE THE LIFETIME OF SINGLET OXYGEN. Phorochembrry und Photobiology 53 (4), 549-553, 1991.
    14. Buytaert, E.; Dewaele, M.; Agostinis, P., Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta, 1776 (1), 86-107, 2007.
    15. Mroz, P.; Yaroslavsky, A.; Kharkwal, G. B.; Hamblin, M. R., Cell death pathways in photodynamic therapy of cancer. Cancers (Basel), 3 (2), 2516-39, 2011.
    16. Anderson, R. R.; Parrish, J. A., The Optics of Human Skin. Journal of Investigative Dermatology, 77 (1), 13-19, 1981.
    17. Hemmer, E.; Benayas, A.; Légaré, F.; Vetrone, F., Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm. Nanoscale Horizons, 1 (3), 168-184, 2016.
    18. Yang, D.; Ma, P.; Hou, Z.; Cheng, Z.; Li, C.; Lin, J., Current advances in lanthanide ion (Ln(3+))-based upconversion nanomaterials for drug delivery. Chem Soc Rev, 44 (6), 1416-48, 2015.
    19. Wang, F.; Liu, X., Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev, 38 (4), 976-89, 2009.
    20. Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F., Upconversion luminescent materials: advances and applications. Chem Rev, 115 (1), 395-465, 2015.
    21. Tian, Q.; Yao, W.; Wu, W.; Jiang, C., NIR light-activated upconversion semiconductor photocatalysts. Nanoscale Horizons, 4 (1), 10-25, 2019.
    22. Xu, Z.; Li, C.; Yang, P.; Zhang, C.; Huang, S.; Lin, J., Rare Earth Fluorides Nanowires/Nanorods Derived from Hydroxides: Hydrothermal Synthesis and Luminescence Properties. Crystal Growth & Design, 9 (11), 4752-4758, 2009.
    23. Chen, G.; Qiu, H.; Prasad, P. N.; Chen, X., Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev, 114 (10), 5161-214, 2014.
    24. Wang, Y.; Zheng, K.; Song, S.; Fan, D.; Zhang, H.; Liu, X., Remote manipulation of upconversion luminescence. Chem Soc Rev, 47 (17), 6473-6485, 2018.
    25. Rohlfing, E. A.; Cox, D. M.; Kaldor, A., Production and characterization of supersonic carbon cluster beams. The Journal of Chemical Physics, 81 (7), 3322-3330, 1984.
    26. Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E., C60: Buckminsterfullerene. Nature, 318 (14), 162–163, 1985.
    27. Liu, X.; Zheng, M.; Kong, X.; Zhang, Y.; Zeng, Q.; Sun, Z.; Buma, W. J.; Zhang, H., Separately doped upconversion-C60 nanoplatform for NIR imaging-guided photodynamic therapy of cancer cells. Chem Commun (Camb), 49 (31), 3224-6, 2013.
    28. Mroz, P.; Tegos, G. P.; Gali, H.; Wharton, T.; Sarna, T.; Hamblin, M. R., Photodynamic therapy with fullerenes. Photochem Photobiol Sci, 6 (11), 1139-49, 2007.
    29. Sharma, S. K.; Chiang, L. Y.; Hamblin, M. R., Photodynamic therapy with fullerenes in vivo: reality or a dream? Nanomedicine (Lond), 6 (10), 1813-25, 2011.
    30. Du, Z.; Gao, N.; Wang, X.; Ren, J.; Qu, X., Near-Infrared Switchable Fullerene-Based Synergy Therapy for Alzheimer's Disease. Small, e1801852, 2018.
    31. Markovic, Z.; Trajkovic, V., Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60). Biomaterials, 29 (26), 3561-73, 2008.
    32. Rawla, P.; Sunkara, T.; Gaduputi, V., Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World J Oncol, 10 (1), 10-27, 2019.
    33. Liu, X.; Que, I.; Kong, X.; Zhang, Y.; Tu, L.; Chang, Y.; Wang, T. T.; Chan, A.; Lowik, C. W.; Zhang, H., In vivo 808 nm image-guided photodynamic therapy based on an upconversion theranostic nanoplatform. Nanoscale, 7 (36), 14914-23, 2015.
    34. Arbogast, J. W.; Darmanyan, A. P.; Foote, C. S.; Rubin, Y.; Diederich, F. N.; Alvarez, M. M.; Anz, S. J.; Whetten, R. L., Photophysical Properties of C60. J. Phys. Chem., 95 (1), 11-12, 1991.
    35. Liu, Q.; Feng, W.; Yang, T.; Yi, T.; Li, F., Upconversion luminescence imaging of cells and small animals. Nature protocols, 8 (10), 2033-2044, 2013.
    36. Wang, F.; Deng, R.; Liu, X., Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes. Nature protocols, 9 (7), 1634-1644, 2014.
    37. Gnanasammandhan, M. K.; Idris, N. M.; Bansal, A.; Huang, K.; Zhang, Y., Near-IR photoactivation using mesoporous silica–coated NaYF4:Yb,Er/Tm upconversion nanoparticles. Nature protocols, 11 (4), 688-713, 2016.
    38. Bogdan, N.; Vetrone, F.; Ozin, G. A.; Capobianco, J. A., Synthesis of Ligand-Free Colloidally Stable Water Dispersible Brightly Luminescent Lanthanide-Doped Upconverting Nanoparticles. Nano Letters, 11 (2), 835-840, 2011.
    39. Huang, P.; Zheng, W.; Zhou, S.; Tu, D.; Chen, Z.; Zhu, H.; Li, R.; Ma, E.; Huang, M.; Chen, X., Lanthanide-Doped LiLuF4Upconversion Nanoprobes for the Detection of Disease Biomarkers. Angewandte Chemie International Edition, 53 (5), 1252-1257, 2014.
    40. Bingel, C., Cyclopropanierung von fullerenen. Chemische Berichte, 126 (8), 1957-1959, 1993.
    41. Rašović, I., Water-soluble fullerenes for medical applications. Materials Science and Technology, 33 (7), 777-794, 2016.
    42. Shi, J.; Yu, X.; Wang, L.; Liu, Y.; Gao, J.; Zhang, J.; Ma, R.; Liu, R.; Zhang, Z., PEGylated fullerene/iron oxide nanocomposites for photodynamic therapy, targeted drug delivery and MR imaging. Biomaterials, 34 (37), 9666-77, 2013.
    43. Ye, S.; Zhou, T.; Cheng, K.; Chen, M.; Wang, Y.; Jiang, Y.; Yang, P., Carboxylic Acid Fullerene (C60) Derivatives Attenuated Neuroinflammatory Responses by Modulating Mitochondrial Dynamics. Nanoscale Res Lett, 10 (1), 953, 2015.
    44. Cheng, F.; Yang, X.; Zhu, H.; Sun, J.; Liu, Y., Synthesis of oligoadducts of malonic acid C60 and their scavenging effects on hydroxyl radical. Journal of Physics and Chemistry of Solids, 61, 1145-1148, 2000.
    45. Li, J.; Song, Y.; Liu, X.; Zhang, M.; He, R.; Chang, Y.; Jin, J.; Xing, G.-M.; Zhang, J., The Effects of C-60(C(COOH)(2))(2)- FITC on Proliferation and Differentiation of Human Mesenchymal Stem Cells In Vitro. Journal of Nanoscience and Nanotechnology, 13 (10), 6517-6521, 2013.
    46. Peng, Y.; Yang, D.; Lu, W.; Hu, X.; Hong, H.; Cai, T., Positron emission tomography (PET) guided glioblastoma targeting by a fullerene-based nanoplatform with fast renal clearance. Acta Biomater, 61, 193-203, 2017.
    47. Liu, X.; Chi, Y.; Dong, G.; Wu, E.; Qiao, Y.; Zeng, H.; Qiu, J., Optical gain at 1550 nm from colloidal solution of Er3+-Yb3+ codoped NaYF4 nanocubes. OPTICS EXPRESS 5885, 17 (7), 5885-5890, 2009.
    48. Jacinto, C.; Oliveira, S. L.; Nunes, L. A. O.; Myers, J. D.; Myers, M. J.; Catunda, T., Normalized-lifetime thermal-lens method for the determination of luminescence quantum efficiency and thermo-optical coefficients: Application toNd3+-doped glasses. Physical Review B, 73 (12), 2006.
    49. Liu, L.; Lu, K.; Xu, L.; Tang, D.; Liu, C.; Shahzad, M. K.; Yan, D.; Khan, F.; Zhao, E.; Li, H., Highly efficient upconversion luminescence of Er heavily doped nanocrystals through 1530 nm excitation. Opt Lett, 44 (3), 711-714, 2019.
    50. Martín-Rodríguez, R.; Fischer, S.; Ivaturi, A.; Froehlich, B.; Krämer, K. W.; Goldschmidt, J. C.; Richards, B. S.; Meijerink, A., Highly Efficient IR to NIR Upconversion in Gd2O2S: Er3+ for Photovoltaic Applications. Chemistry of Materials, 25 (9), 1912-1921, 2013.
    51. Rabouw, F. T.; Prins, P. T.; Villanueva-Delgado, P.; Castelijns, M.; Geitenbeek, R. G.; Meijerink, A., Quenching Pathways in NaYF4:Er(3+),Yb(3+) Upconversion Nanocrystals. ACS Nano, 12 (5), 4812-4823, 2018.
    52. Zuo, J.; Li, Q.; Xue, B.; Li, C.; Chang, Y.; Zhang, Y.; Liu, X.; Tu, L.; Zhang, H.; Kong, X., Employing shells to eliminate concentration quenching in photonic upconversion nanostructure. Nanoscale, 9 (23), 7941-7946, 2017.
    53. Li, Z.; Yuan, H.; Yuan, W.; Su, Q.; Li, F., Upconversion nanoprobes for biodetections. Coordination Chemistry Reviews, 354, 155-168, 2018.
    54. Chen, X.; Peng, D.; Ju, Q.; Wang, F., Photon upconversion in core-shell nanoparticles. Chem Soc Rev, 44 (6), 1318-30, 2015.
    55. Wang, Y.; Liu, K.; Liu, X.; Dohnalová, K.; Gregorkiewicz, T.; Kong, X.; Aalders, M. C. G.; Buma, W. J.; Zhang, H., Critical Shell Thickness of Core/Shell Upconversion Luminescence Nanoplatform for FRET Application. The Journal of Physical Chemistry Letters, 2 (17), 2083-2088, 2011.
    56. Liu, L.; Wang, S.; Zhao, B.; Pei, P.; Fan, Y.; Li, X.; Zhang, F., Er(3+) Sensitized 1530 nm to 1180 nm Second Near-Infrared Window Upconversion Nanocrystals for In Vivo Biosensing. Angew Chem Int Ed Engl, 57 (25), 7518-7522, 2018.
    57. Luo, X.; Yuminami, R.; Sakurai, T.; Akimoto, K., A novel synthesis method and up-conversion properties of hexagonal-phase NaYF4:Er nano-crystals. Journal of Rare Earths, 31 (3), 267-270, 2013.
    58. Yang, L.; Finney, N. S., A mechanistically-distinct approach to fluorescence visualization of singlet oxygen. Chem Commun (Camb), 53 (83), 11449-11452, 2017.

    無法下載圖示 校內:2024-07-19公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE