| 研究生: |
林韋劭 Lin, Wei-Shao |
|---|---|
| 論文名稱: |
以溶膠凝膠法製備鋯鈦酸鍶薄膜電阻式記憶體 Resistive Random Access Memory by Sol-Gel Strontium Zirconate Titanium Thin Film |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 電阻式記憶體 、溶膠凝膠法 、鋯鈦酸鍶 |
| 外文關鍵詞: | Resistive random access memory, sol-gel, strontium zirconate titanium |
| 相關次數: | 點閱:114 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用溶膠凝膠法製備鋯鈦酸鍶薄膜做為電阻式記憶體之絕緣層材料。鋯鈦酸鍶薄膜,除了有緻密的薄膜表面,也有平坦的表面,其表面粗糙度可達到0.9 nm。本實驗更藉由金屬鋁做為插入層,作為capping layer,幫助元件的載子傳輸,進一步將元件之阻值比由104提升至107以上,且元件之低阻態電流也由50mA降低至0.4mA,大幅地減少元件整體之消耗功率。另外,除了沉積鋯鈦酸鍶薄膜在氧化銦錫/玻璃基板之外,也應用可撓式氧化銦錫/聚萘二甲酸乙二醇酯(PEN)基板,並且在可撓度測試當中,可達到阻值比為103。
本實驗也使用對材料物理性質分析,加以驗證電阻式記憶體元件特性和電阻轉換機制的表現,並且討論未加入金屬摻入層和加入金屬摻入層在鋯鈦酸鍶薄膜的物性和電性和傳導機制之差異。
In this thesis, we prepared the SZT thin film using sol-gel process for insulator of Resistive Radom Access Memory. The SZT thin film was deposited not only on the ITO/Glass substrate, but also on the flexible ITO/PEN substrate. Further, we utilized embedded Al in SZT thin film for enhancement of switching characteristics. Compared with the pure SZT thin film RRAM, the RRAM witch use the embedded Al in SZT thin film demonstrates outstanding device parameters improvements, such as higher resistance ratio larger than 107, lower operation voltage(VSET equal to -0.8V and VRESET equal to 2.05V), uniform film, and device stability of more than 105s. We also analyzed the physical properties of the SZT thin film as well as the embedded Al SZT thin film in order to discuss with the electrical characteristics of the RRAM devices.
[1] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive switching memories –nanoionic mechanisms, prospects, and challenges,” Advanced Materials, vol. 21, pp. 2632–2663, 2009.
[2] H. S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T. Chen, and M. J. Tsai, “Metal–oxide RRAM,” Proceedings of the IEEE, vol. 100, no. 6, pp. 1951-1970, Jun. 2012.
[3] A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel, and D. Widmer, “Reproducible switching effect in thin oxide films for memory applications,” Applied Physics Letters, vol. 77, no. 1, pp. 139-141, Jul. 2000.
[4] X. Liu, I. Kim, M. Siddik and S. Md, “Resistive switching mechanism of a Pr0.7Ca0.3MnO3-based memory device and assessment of its suitability for nano-scale applications,” Journal of the Korean Physical Society, vol. 59, no. 2, pp. 497-500, Aug. 2011.
[5] K. Szot, W. Speierl, G. Bihlmayer, and R. Waser, “Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3,” Nature Materials, vol. 5, pp. 312-320, Apr. 2006.
[6] D. Choi, D. Lee, H. Sim, M. Chang, and H. Hwang, “Reversible resistive switching of SrTiOx thin films for nonvolatile memory applications,” Applied Physics Letters, Vol. 88, pp. 082904-1-082904-3, Feb. 2006.
[7] M. C. Ni, S. M. Guo, H. F. Tian, Y. G. Zhao, and J. Q. Li, “Resistive switching effect in SrTiO3−δ/Nb-doped SrTiO3 heterojunction,” Applied Physics Letters, vol. 91, pp. 183502-1-183502-3, Oct. 2007.
[8] Z. Tang, Y. Xiong, M. Tang, C. Cheng, D. Xu, Y. Xiao, and Y. Zhou, “Influence of substrates on resistive switching behaviors of V-doped SrTiO3 thin films,” Japanese Journal of Applied Physics, vol. 53, pp. 035503-1-035503-7, Feb. 2014.
[9] Z. H. Tang, Y. Xiong, D. L. Xu, M. H. Tang, Z. P. Wang, Y. G. Xiao, B. W. Zeng, X. C. Gu, J. C. Li, and L. H. Wang, “Resistive switching properties of sol–gel-derived V-Doped SrTiO3 thin films,” Journal of Electronic Materials, vol. 42, no. 8, pp. 2510-2515, Apr. 2013.
[10] D. S. Lee, Y. H. Sung, I. G. Lee, J. G. Kim, H. Sohn, D. H. Ko, “Enhanced bipolar resistive switching of HfO2 with a Ti interlayer,” Applied Physics A, vol. 102, pp. 997–1001, Feb. 2011.
[11] Y. C. Yang, F. Pan, F. Zeng, and M. Liu, “Switching mechanism transition induced by annealing treatment in nonvolatile Cu/ZnO/Cu/ZnO/Pt resistive memory: from carrier trapping/detrapping to electrochemical metallization,” Journal of Applied Physics, vol.106, pp. 123705-1-123705-5, Dec. 2009.
[12] Y. L. Chung, P. Y. Lai, Y. C. Chen, and J. S. Chen, “Schottky barrier mediated single-polarity resistive switching in Pt layer-included TiOx memory device,” ACS Applied Materials & Interfaces, vol. 3, pp. 1918–1924, May. 2011.
[13] X. Liu, Y. Liu, W. Chen, J. Li and L. Liao, “Ferroelectric memory based on nanostructures,” Nanoscale Research Letters, vol. 7, pp. 1-16, 2012.
[14] J. M. Slaughter, “Materials for Magnetoresistive random access memory,” Annual Review of Materials Research, vol. 39, pp. 277-296, Aug. 2009.
[15] Y. C. Chen, C. T. Chen, J. Y. Yu, C. Y. Lee, C. F. Chen, and S. L. Lung, “180 nm Sn-doped Ge2Sb2Te5 chalcogenide phasechange memory device for low power, high speed embedded memory for SoC applications,” IEEE Custom Integrated Circuits Conference, pp. 395-398, 2003.
[16] C. H. Cheng, A. Chin, and F. S. Yeh, “Ultralow-power Ni/GeO/STO/TaN resistive switching memory,” IEEE Electron Device Letters, vol. 31, no. 9, pp. 1020-1022, 2010.
[17] D. j. Seong, J. Park, N. Lee, M. Hasan1, S. Jung, H. Choi1, J. Lee, M. Jo1, W. Lee, S. Park, S. Kim, Y. H. Jang, Y. Lee, M. Sung, D. Kil, Hwang, S. Chung, S. Hong, J. Roh, and H. Hwang, “Effect of oxygen migration and interface engineering on resistance switching behavior of reactive metal/polycrystalline Pr0.7Ca0.3MnO3 device for nonvolatile memory applications,” IEEE Electron Devices Meeting, pp. 1-4, 2009.
[18] C. Y. Lin, M. H. Lin, M. C. Wu, C. H. Lin and T. Y. Tseng, “Improvement of resistive switching characteristics in SrZrO3 thin films with embedded Cr Layer,” Electron Device Letters, vol. 29, no. 10, pp. 1108-1111, 2008.
[19] W. Bai, R. Huang, Y. Cai, Y. Tang, X. Zhang and Y. Wang, “Record low-power organic RRAM with sub-20-nA reset current,” IEEE Electron Device Letters, vol. 34, no. 2, pp. 223-225, 2013.
[20] F. Argall, “Switching phenomena in titanium oxide thin films”, Solid-State Electronics, vol. 11, pp. 535-541, 1968.
[21] S. Seo, M. J. Lee, D. H. Seo, S. K. Choi, D. S. Suh, Y. S. Joung, I. K. Yoo, I. S. Byun, I. R. Hwang, S. H. Kim and B. H. Park, “Switching phenomena in titanium oxide thin films,” Applied Physics Letters, vol. 86, p. 093509, 2005.
[22] D. Lee, H. Choi, H. Sim, D. Choi, H. Hwang, M. J. Lee, S. A. Seo and I. K. Yoo, “Resistance switching of the nonstoichiometric zirconium oxide for nonvolatile memory applications,” IEEE Electron Device Letters, Vol. 26, no. 9, pp. 719-721, 2005.1020-1022, 2010.
[23] R. D. Clark, “Emerging applications for high k materials in VLSI technology,” Materials, vol. 7, pp. 2914-1944, Apr. 2014.
[24] D. H. Yoon, S. J. Kim, J. Jung, H. S. Lim, and H. J. Kim, “Low-voltage driving solution-processed nickel oxide based unipolar resistive switching memory with Ni nanoparticles,” Journal of Materials Chemistry, vol. 22, pp. 17568-17572, 2012.
[25] K. K. Chiang, J. S. Chen and J. J. Wu, “Aluminum electrode modulated bipolar resistive switching of Al/fuel-assisted NiOx/ITO memory devices modeled with a dual-oxygen-reservoir structure,” ACS Applied Materials & Interfaces, vol. 4, pp. 4237-4245, 2012.
[26] C. Ye, C. Zhan, T. M. Tsai, K. C. Chang, M. C. Chen, T. C. Chang, T. Deng, and H. Wang, “Low-power bipolar resistive switching TiN/HfO2/ITO memory with self-compliance current phenomenon,” Applied Physics Express, vol. 7, p.034101, 2014.
[27] R. Waser and M. Aono, “Nanoionics-based resistive switching memories,” Nature Materials, vol. 6, pp. 833-840, 2007.
[28] H. A. Fowler, J. E. Devaney and J. G. Hagedorn, “Growth model for filamentary streamers in an ambient field,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 10, no. 1, 2003.
[29] A. Sawa, “Resistive switching in transition metal oxides,” Materials Today, vol. 11, pp. 28-36, 2008.
[30] M. H. Lin, M. C. Wu, C. H. Lin and T. Y. Tseng, “Effects of vanadium doping on resistive switching characteristics and mechanisms of SrZrO3-based memory films,” IEEE Transactions on Electron Devices , vol. 57, no. 8, pp. 1801-1808, 2010.
[31] H. T. Lin, Z. Pei, and Y. J. Chan, “Carrier transport mechanism in a nanoparticle-incorporated organic bistable memory device,” IEEE Electron Device Letters, vol. 28, no. 7, pp. 569-571, 2007.
[32] F. C. Chiu, “A review on conduction mechanisms in dielectric films,” Advances in Materials Science and Engineering, pp. 1-18, 2014.
[33] Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, “Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application,” Nano Letters, vol. 9, no. 4, pp. 1636-1643, Feb. 2009.
[34] M. K. Yang, J. W. Park, T. K. Ko, and J. K. Lee, “Bipolar resistive switching behavior in Ti/MnO2/Pt structure for nonvolatile memory devices,” Applied Physics Letters, vol. 95, pp. 042105-1-042105-3, Jul. 2009.
[35] W. Wang, G. Dong, L. Wang, and Y. Qiu, “Pentacene thin-film transistors with sol–gel derived amorphous Ba0.6Sr0.4TiO3 gate dielectric,” Microelectronic Engineering, vol. 85, pp. 414–418, Jul. 2007.
[36] H. T. Lin, Z. Pei, and Y. J. Chan, “Carrier Transport mechanism in a nanoparticle-incorporated organic bistable memory device,” IEEE Electron Device Letters, vol. 28, no. 7, pp. 569–571, Jul. 2007.
[37] Q. Liu, S. Long, W. Wang, Q. Zuo, S. Zhang, J. Chen, and M. Liu, “ Improvement of resistive switching properties in ZrO2-based ReRAM with implanted Ti ions,” IEEE Electron Device Letters, vol. 30, no. 12, pp. 1335-1337, Dec. 2009
[38] J. J. Wan, P. Zhou, L. Ye, Y. Y. Lin, T. A. Tang, H. M. Wu, and M. H. Chi, “In situ observation of compliance-current overshoot and its effect on resistive switching,” IEEE Electron Device Letters, vol. 31, no. 3, pp. 246-248, 2010.