簡易檢索 / 詳目顯示

研究生: 林韋劭
Lin, Wei-Shao
論文名稱: 以溶膠凝膠法製備鋯鈦酸鍶薄膜電阻式記憶體
Resistive Random Access Memory by Sol-Gel Strontium Zirconate Titanium Thin Film
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 97
中文關鍵詞: 電阻式記憶體溶膠凝膠法鋯鈦酸鍶
外文關鍵詞: Resistive random access memory, sol-gel, strontium zirconate titanium
相關次數: 點閱:114下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用溶膠凝膠法製備鋯鈦酸鍶薄膜做為電阻式記憶體之絕緣層材料。鋯鈦酸鍶薄膜,除了有緻密的薄膜表面,也有平坦的表面,其表面粗糙度可達到0.9 nm。本實驗更藉由金屬鋁做為插入層,作為capping layer,幫助元件的載子傳輸,進一步將元件之阻值比由104提升至107以上,且元件之低阻態電流也由50mA降低至0.4mA,大幅地減少元件整體之消耗功率。另外,除了沉積鋯鈦酸鍶薄膜在氧化銦錫/玻璃基板之外,也應用可撓式氧化銦錫/聚萘二甲酸乙二醇酯(PEN)基板,並且在可撓度測試當中,可達到阻值比為103。
    本實驗也使用對材料物理性質分析,加以驗證電阻式記憶體元件特性和電阻轉換機制的表現,並且討論未加入金屬摻入層和加入金屬摻入層在鋯鈦酸鍶薄膜的物性和電性和傳導機制之差異。

    In this thesis, we prepared the SZT thin film using sol-gel process for insulator of Resistive Radom Access Memory. The SZT thin film was deposited not only on the ITO/Glass substrate, but also on the flexible ITO/PEN substrate. Further, we utilized embedded Al in SZT thin film for enhancement of switching characteristics. Compared with the pure SZT thin film RRAM, the RRAM witch use the embedded Al in SZT thin film demonstrates outstanding device parameters improvements, such as higher resistance ratio larger than 107, lower operation voltage(VSET equal to -0.8V and VRESET equal to 2.05V), uniform film, and device stability of more than 105s. We also analyzed the physical properties of the SZT thin film as well as the embedded Al SZT thin film in order to discuss with the electrical characteristics of the RRAM devices.

    摘要 I Abstract II 致謝 IV Contents VII Figure Captions X Table Captions XII Chapter 1 Introduction 1 1-1 Background 1 1-2 Motivation 2 1-3 Organization of Thesis 3 Chapter 2 Literature Survey 5 2-1 Introduction of Non-Volatile Memory (NVMs) 5 2-2 Promising Next Generation NVMs 6 2-2-1 Ferroelectric RAM (FeRAM) 6 2-2-2 Magnetic RAM (MRAM) 7 2-2-3 Phase Change RAM (PCRAM) 8 2-2-4 Resistive Radom-Access Memory (RRAM) 11 2-3 Resistive Random-Access Memory (RRAM) 11 2-3-1 Insulator Materials 12 2-3-1-1 Pervoskite Materials 12 2-3-1-2 Organic Materials 14 2-3-1-3 Transition Metal Oxide 14 2-3-2 Resistive Switching Phenomena 15 2-3-3 Mechanism of RRAM 18 2-3-3-1 Filament Theory 18 2-3-3-2 Redox Processes 19 2-3-3-3 Thermalchemical Effect 20 2-3-4 Mechanism of Dieletric Breakdown 23 2-3-4-1 Tunneling Effect 23 2-3-4-2 Schottky Emission 24 2-3-4-3 Poole-Frenkel Emission 25 2-3-4-4 Ohmic Conduction 27 2-3-4-5 Space-Charge-Limited Conduction 27 2-4 Important Parameters of RRAMs 30 2-4-1 Operation Voltage 30 2-4-2 Resistance Ratio 31 2-4-3 Retention 32 Chapter 3 Experiment 33 3-1 Sol-Gel Process 33 3-1-1 Solution Preparaiotn 33 3-1-2 Experiment Materials 35 3-2 Fabrication and Measurment Equipment 39 3-2-1 Fabrication Equipment 39 3-2-1-1 Sputter 39 3-2-1-2 Vaccum Oven 39 3-2-1-3 Spin Coater 40 3-2-2 Measurment Equipment 42 3-2-2-1 Scanning Electron Microscopy (SEM) 42 3-2-2-2 Atomic Force Microscope (AFM) 43 3-2-2-3 X-ray Photoelectron Spectroscopy (XPS) 43 3-2-2-4 X-ray Diffraction (XRD) 44 3-2-2-5 Transmission Electron Mircroscopy (TEM) 44 3-2-2-6 Current-Voltage(I-V) Measurement 45 3-2-2-7 Retention Characteristics 45 3-2-2-8 Endurance Characteristics 45 3-2-2-9 Resistance-Temperature(R-T) Measurement 46 3-3 Sample Preparation 47 3-3-1 Experiment Procedures of Al/SZT/ITO/Glass Structures 47 3-3-2 Experiment Procedures of Al/SZT/ITO/PEN Structures 50 3-3-3 Experiment Procedures of Embedded Al SZT Thin Film Structures 53 3-3-4 Experiment Procedures of Al/SZT/SZT/ITO/Glass Structures 55 Chapter 4 Results and Discussion 57 4-1 Pure SZT Thin Film- Electrical Properties 57 4-1-1 Resistive Switching Properties of Al/SZT/ITO/Glass 57 4-1-2 Curve Fitting 58 4-1-3 Resistance-Temperature Characteristics 59 4-1-4 Uniformity 60 4-1-5 Resistive Switching Properties of Al/SZT//ITO/PEN 60 4-2 Pure SZT Thin Film- Physical Properties 65 4-2-1 X-ray Photoelectron Spectroscopy of SZT film 65 4-2-2 X-ray Diffraction of SZT film 66 4-2-3 Surface Morphology 66 4-3 The Effect of Embedded Metal in SZT Thin Film- Electrical Properties 70 4-3-1 Resistive Switching Properties of Embedded Al in SZT Thin Film 70 4-3-2 Curve Fitting of 18nm Al Embedded Layer SZT Thin Film 71 4-3-3 Resistance-Temperature Characteristics 72 4-3-4 Reliability Test 73 4-3-4-1 Retention 73 4-3-4-2 Endurence 73 4-3-4-3 Uniformity 74 4-3-5 Resistive Switching Properties of Al/SZT/SZT/ITO 74 4-4 Physical Property Analyses of 18nm Al Embedded Layer 82 4-4-1 Transmission Electron Microscope (TEM) 82 4-4-2 AES Depth Profile of Al/SZT/Al/SZT/ITO Structures 82 4-4-3 Surface Morphology 84 4-5 Comparison 88 4-5-1 Comparison : Different Thickness of The Embedded Al Layer 88 4-5-2 Comparison : SZT-Based RRAMs 88 4-5-3 Comparison : Other Embedded Materials 90 Chapter 5 Conclusions and Future Prospects 91 5-1 Conclusions 91 5-2 Future Prospects 93 References 94

    [1] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive switching memories –nanoionic mechanisms, prospects, and challenges,” Advanced Materials, vol. 21, pp. 2632–2663, 2009.
    [2] H. S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T. Chen, and M. J. Tsai, “Metal–oxide RRAM,” Proceedings of the IEEE, vol. 100, no. 6, pp. 1951-1970, Jun. 2012.
    [3] A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel, and D. Widmer, “Reproducible switching effect in thin oxide films for memory applications,” Applied Physics Letters, vol. 77, no. 1, pp. 139-141, Jul. 2000.
    [4] X. Liu, I. Kim, M. Siddik and S. Md, “Resistive switching mechanism of a Pr0.7Ca0.3MnO3-based memory device and assessment of its suitability for nano-scale applications,” Journal of the Korean Physical Society, vol. 59, no. 2, pp. 497-500, Aug. 2011.
    [5] K. Szot, W. Speierl, G. Bihlmayer, and R. Waser, “Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3,” Nature Materials, vol. 5, pp. 312-320, Apr. 2006.
    [6] D. Choi, D. Lee, H. Sim, M. Chang, and H. Hwang, “Reversible resistive switching of SrTiOx thin films for nonvolatile memory applications,” Applied Physics Letters, Vol. 88, pp. 082904-1-082904-3, Feb. 2006.
    [7] M. C. Ni, S. M. Guo, H. F. Tian, Y. G. Zhao, and J. Q. Li, “Resistive switching effect in SrTiO3−δ/Nb-doped SrTiO3 heterojunction,” Applied Physics Letters, vol. 91, pp. 183502-1-183502-3, Oct. 2007.
    [8] Z. Tang, Y. Xiong, M. Tang, C. Cheng, D. Xu, Y. Xiao, and Y. Zhou, “Influence of substrates on resistive switching behaviors of V-doped SrTiO3 thin films,” Japanese Journal of Applied Physics, vol. 53, pp. 035503-1-035503-7, Feb. 2014.
    [9] Z. H. Tang, Y. Xiong, D. L. Xu, M. H. Tang, Z. P. Wang, Y. G. Xiao, B. W. Zeng, X. C. Gu, J. C. Li, and L. H. Wang, “Resistive switching properties of sol–gel-derived V-Doped SrTiO3 thin films,” Journal of Electronic Materials, vol. 42, no. 8, pp. 2510-2515, Apr. 2013.
    [10] D. S. Lee, Y. H. Sung, I. G. Lee, J. G. Kim, H. Sohn, D. H. Ko, “Enhanced bipolar resistive switching of HfO2 with a Ti interlayer,” Applied Physics A, vol. 102, pp. 997–1001, Feb. 2011.
    [11] Y. C. Yang, F. Pan, F. Zeng, and M. Liu, “Switching mechanism transition induced by annealing treatment in nonvolatile Cu/ZnO/Cu/ZnO/Pt resistive memory: from carrier trapping/detrapping to electrochemical metallization,” Journal of Applied Physics, vol.106, pp. 123705-1-123705-5, Dec. 2009.
    [12] Y. L. Chung, P. Y. Lai, Y. C. Chen, and J. S. Chen, “Schottky barrier mediated single-polarity resistive switching in Pt layer-included TiOx memory device,” ACS Applied Materials & Interfaces, vol. 3, pp. 1918–1924, May. 2011.
    [13] X. Liu, Y. Liu, W. Chen, J. Li and L. Liao, “Ferroelectric memory based on nanostructures,” Nanoscale Research Letters, vol. 7, pp. 1-16, 2012.
    [14] J. M. Slaughter, “Materials for Magnetoresistive random access memory,” Annual Review of Materials Research, vol. 39, pp. 277-296, Aug. 2009.
    [15] Y. C. Chen, C. T. Chen, J. Y. Yu, C. Y. Lee, C. F. Chen, and S. L. Lung, “180 nm Sn-doped Ge2Sb2Te5 chalcogenide phasechange memory device for low power, high speed embedded memory for SoC applications,” IEEE Custom Integrated Circuits Conference, pp. 395-398, 2003.
    [16] C. H. Cheng, A. Chin, and F. S. Yeh, “Ultralow-power Ni/GeO/STO/TaN resistive switching memory,” IEEE Electron Device Letters, vol. 31, no. 9, pp. 1020-1022, 2010.
    [17] D. j. Seong, J. Park, N. Lee, M. Hasan1, S. Jung, H. Choi1, J. Lee, M. Jo1, W. Lee, S. Park, S. Kim, Y. H. Jang, Y. Lee, M. Sung, D. Kil, Hwang, S. Chung, S. Hong, J. Roh, and H. Hwang, “Effect of oxygen migration and interface engineering on resistance switching behavior of reactive metal/polycrystalline Pr0.7Ca0.3MnO3 device for nonvolatile memory applications,” IEEE Electron Devices Meeting, pp. 1-4, 2009.
    [18] C. Y. Lin, M. H. Lin, M. C. Wu, C. H. Lin and T. Y. Tseng, “Improvement of resistive switching characteristics in SrZrO3 thin films with embedded Cr Layer,” Electron Device Letters, vol. 29, no. 10, pp. 1108-1111, 2008.
    [19] W. Bai, R. Huang, Y. Cai, Y. Tang, X. Zhang and Y. Wang, “Record low-power organic RRAM with sub-20-nA reset current,” IEEE Electron Device Letters, vol. 34, no. 2, pp. 223-225, 2013.
    [20] F. Argall, “Switching phenomena in titanium oxide thin films”, Solid-State Electronics, vol. 11, pp. 535-541, 1968.
    [21] S. Seo, M. J. Lee, D. H. Seo, S. K. Choi, D. S. Suh, Y. S. Joung, I. K. Yoo, I. S. Byun, I. R. Hwang, S. H. Kim and B. H. Park, “Switching phenomena in titanium oxide thin films,” Applied Physics Letters, vol. 86, p. 093509, 2005.
    [22] D. Lee, H. Choi, H. Sim, D. Choi, H. Hwang, M. J. Lee, S. A. Seo and I. K. Yoo, “Resistance switching of the nonstoichiometric zirconium oxide for nonvolatile memory applications,” IEEE Electron Device Letters, Vol. 26, no. 9, pp. 719-721, 2005.1020-1022, 2010.
    [23] R. D. Clark, “Emerging applications for high k materials in VLSI technology,” Materials, vol. 7, pp. 2914-1944, Apr. 2014.
    [24] D. H. Yoon, S. J. Kim, J. Jung, H. S. Lim, and H. J. Kim, “Low-voltage driving solution-processed nickel oxide based unipolar resistive switching memory with Ni nanoparticles,” Journal of Materials Chemistry, vol. 22, pp. 17568-17572, 2012.
    [25] K. K. Chiang, J. S. Chen and J. J. Wu, “Aluminum electrode modulated bipolar resistive switching of Al/fuel-assisted NiOx/ITO memory devices modeled with a dual-oxygen-reservoir structure,” ACS Applied Materials & Interfaces, vol. 4, pp. 4237-4245, 2012.
    [26] C. Ye, C. Zhan, T. M. Tsai, K. C. Chang, M. C. Chen, T. C. Chang, T. Deng, and H. Wang, “Low-power bipolar resistive switching TiN/HfO2/ITO memory with self-compliance current phenomenon,” Applied Physics Express, vol. 7, p.034101, 2014.
    [27] R. Waser and M. Aono, “Nanoionics-based resistive switching memories,” Nature Materials, vol. 6, pp. 833-840, 2007.
    [28] H. A. Fowler, J. E. Devaney and J. G. Hagedorn, “Growth model for filamentary streamers in an ambient field,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 10, no. 1, 2003.
    [29] A. Sawa, “Resistive switching in transition metal oxides,” Materials Today, vol. 11, pp. 28-36, 2008.
    [30] M. H. Lin, M. C. Wu, C. H. Lin and T. Y. Tseng, “Effects of vanadium doping on resistive switching characteristics and mechanisms of SrZrO3-based memory films,” IEEE Transactions on Electron Devices , vol. 57, no. 8, pp. 1801-1808, 2010.
    [31] H. T. Lin, Z. Pei, and Y. J. Chan, “Carrier transport mechanism in a nanoparticle-incorporated organic bistable memory device,” IEEE Electron Device Letters, vol. 28, no. 7, pp. 569-571, 2007.
    [32] F. C. Chiu, “A review on conduction mechanisms in dielectric films,” Advances in Materials Science and Engineering, pp. 1-18, 2014.
    [33] Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, “Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application,” Nano Letters, vol. 9, no. 4, pp. 1636-1643, Feb. 2009.
    [34] M. K. Yang, J. W. Park, T. K. Ko, and J. K. Lee, “Bipolar resistive switching behavior in Ti/MnO2/Pt structure for nonvolatile memory devices,” Applied Physics Letters, vol. 95, pp. 042105-1-042105-3, Jul. 2009.
    [35] W. Wang, G. Dong, L. Wang, and Y. Qiu, “Pentacene thin-film transistors with sol–gel derived amorphous Ba0.6Sr0.4TiO3 gate dielectric,” Microelectronic Engineering, vol. 85, pp. 414–418, Jul. 2007.
    [36] H. T. Lin, Z. Pei, and Y. J. Chan, “Carrier Transport mechanism in a nanoparticle-incorporated organic bistable memory device,” IEEE Electron Device Letters, vol. 28, no. 7, pp. 569–571, Jul. 2007.
    [37] Q. Liu, S. Long, W. Wang, Q. Zuo, S. Zhang, J. Chen, and M. Liu, “ Improvement of resistive switching properties in ZrO2-based ReRAM with implanted Ti ions,” IEEE Electron Device Letters, vol. 30, no. 12, pp. 1335-1337, Dec. 2009
    [38] J. J. Wan, P. Zhou, L. Ye, Y. Y. Lin, T. A. Tang, H. M. Wu, and M. H. Chi, “In situ observation of compliance-current overshoot and its effect on resistive switching,” IEEE Electron Device Letters, vol. 31, no. 3, pp. 246-248, 2010.

    下載圖示 校內:2020-09-02公開
    校外:2020-09-02公開
    QR CODE