簡易檢索 / 詳目顯示

研究生: 呂沂儒
Lu, Yi-Ru
論文名稱: 以NSGA-III法求解多目標整合批次揀貨及環境車輛路徑問題
Applying NSGA-III for a Multi-objective Integrated Batch Picking and Environmental Vehicle Routing Problem
指導教授: 沈宗緯
Shen, Chung-Wei
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 56
中文關鍵詞: 批次揀貨整合批次揀貨與車輛路徑問題基於參考點之非支配排序遺傳演算法環境車輛路徑問題
外文關鍵詞: Batch Picking Problem, Integrated Batch Picking and Vehicle Routing Problem, Environmental Vehicle Routing Problem, Non-dominated Sorting Genetic Algorithm III
相關次數: 點閱:125下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 整合揀貨與配送車輛路徑問題近年來逐漸受到重視,過去研究僅考慮配送成本與服務水準,而未將配送過程中車輛所產生的碳排放一併納入考量,因此,本研究同時考慮揀貨成本、配送成本、配送偏誤時間及配送過程中所產生的碳排放,而為一個具多目標之整合批次揀貨及環境車輛路徑問題。由於傳統方法在求解三個以上目標之多目標問題時常無法兼顧各目標間之權衡,本研究以基於參考點之非支配排序遺傳演算法NSGA-III (Non-dominated Sorting Genetic Algorithm III)法來求解柏拉圖最佳前緣,並與NSGA-II法求解之結果進行比較。研究結果顯示,本研究採用之NSGA-III法所求得之柏拉圖最佳前緣在配送成本與碳排放目標中可得到更優的結果,在評估最佳前緣的分布程度方面表現亦較佳,顯示以NSGA-III法所求得之柏拉圖最佳前緣解是具有競爭力的,能求得在同時考量揀貨成本、配送成本、配送偏誤時間與碳排放多目標下之不同組合解,提供物流業者做為決策之參考。

    In the past, the problem of integrating picking and delivery vehicle routing mainly considered distribution costs and time gaps. This study considers the carbon emissions of distribution vehicles, as well as the picking cost, time gap and distribution cost, which makes the optimization problem a multi-objective problem and faces certain challenges in solving efficiency. Therefore, this study explore the multi-objective integrated batch picking and environmental vehicle routing problem contains the carbon emissions of distribution vehicles. First, a mathematical programming model is established. In order to be able to deal with large-scale and multi-objective problems, this study is based on the non-dominated sorting genetic algorithm NSGA-III method to solve the Pareto optimal front, and compared with the single-objective minimization problem and the solution from NSGA-II method. The results of the study show that single-objective optimal solution cannot dominate the Pareto optimal front solution obtained by the NSGA-III method. And compared with NSGA-II method, NSGA-III can obtain better solution which means that the Pareto optimal front solution obtained in this study is competitive. The result of different combinations of picking costs, time gaps, distribution costs and carbon emissions can can serve as decision recommendations.

    摘要 I 致謝 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 4 1.3 研究架構與流程 4 第二章 文獻回顧 7 2.1 整合揀貨與配送問題 7 2.1.1 整合揀貨與配送問題相關研究 7 2.1.2 整合批次揀貨與配送問題相關研究 9 2.2 多目標最佳化問題求解方法 10 2.3 小結 12 第三章 研究方法 15 3.1 問題定義與假設 15 3.2 數學模型 21 3.3 非支配排序基因演算法 27 3.4 染色體與運算元設計 33 3.4.1 染色體設計 33 3.4.2 適應度函數 35 3.4.3 交配運算 35 3.4.4變異運算 36 3.5 演算法初始解及流程 37 第四章 範例測試與分析 40 4.1 測試範例與參數設定 40 4.2 NSGA-III演算法參數設定 43 第五章 結論 50 參考文獻 52

    Abbass, H. A. (2002). The self-adaptive pareto differential evolution algorithm. Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600),
    Ardjmand, E., Singh, M., Shakeri, H., Tavasoli, A., & Young Ii, W. A. (2021). Mitigating the risk of infection spread in manual order picking operations: A multi-objective approach. Applied Soft Computing, 100, 106953.
    Chen, W., Zhang, Y., & Zhou, Y. (2022). Integrated scheduling of zone picking and vehicle routing problem with time windows in the front warehouse mode. Computers & Industrial Engineering, 163, 107823.
    Cui, Z., Chang, Y., Zhang, J., Cai, X., & Zhang, W. (2019). Improved NSGA-III with selection-and-elimination operator. Swarm and Evolutionary Computation, 49, 23-33.
    Deb, K., & Jain, H. (2013). An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE transactions on evolutionary computation, 18(4), 577-601.
    Elhedhli, S., & Merrick, R. (2012). Green supply chain network design to reduce carbon emissions. Transportation Research Part D: Transport and Environment, 17(5), 370-379.
    Fernández Gil, A., Lalla-Ruiz, E., Gómez Sánchez, M., & Castro, C. (2022). A Review of Heuristics and Hybrid Methods for Green Vehicle Routing Problems considering Emissions. Journal of Advanced Transportation, 2022.
    Gupta, I., & Parashar, A. (2011). Study of Crossover operators in Genetic Algorithm for Travelling Salesman Problem. International Journal of Advanced Research in Computer Science, 2(4).
    IPCC. (2019). IPCC 2019 REPORT. https://www.ipcc.ch/report/ar5/wg3/
    Ishibuchi, H., Imada, R., Setoguchi, Y., & Nojima, Y. (2016). Performance comparison of NSGA-II and NSGA-III on various many-objective test problems. 2016 IEEE Congress on Evolutionary Computation (CEC),
    Kara, I., Kara, B. Y., & Yetis, M. K. (2007). Energy minimizing vehicle routing problem. International Conference on Combinatorial Optimization and Applications,
    Kuhn, H., Schubert, D., & Holzapfel, A. (2021). Integrated order batching and vehicle routing operations in grocery retail–A General Adaptive Large Neighborhood Search algorithm. European journal of operational research, 294(3), 1003-1021.
    Lai, Y.-W. (2022). Applying NSGA-II for a bi-objective integrated batch picking and vehicle routing problem. National Cheng Kung University Department of Transportation & Communication Management Science.
    Li, X., Song, Y., Mao, J., & Zhang, Z. (2022). Many-objective rapid optimization of reactor shielding design based on NSGA-III. Annals of Nuclear Energy, 177, 109322.
    Liu, A., Zhu, Q., Xu, L., Lu, Q., & Fan, Y. (2021). Sustainable supply chain management for perishable products in emerging markets: An integrated location-inventory-routing model. Transportation Research Part E: Logistics and Transportation Review, 150, 102319.
    Maiyar, L. M., & Thakkar, J. J. (2019). Environmentally conscious logistics planning for food grain industry considering wastages employing multi objective hybrid particle swarm optimization. Transportation Research Part E: Logistics and Transportation Review, 127, 220-248.
    Mohammadi, S., Al-e-Hashem, S. M., & Rekik, Y. (2020). An integrated production scheduling and delivery route planning with multi-purpose machines: A case study from a furniture manufacturing company. International journal of production economics, 219, 347-359.
    Moons, S., Braekers, K., Ramaekers, K., Caris, A., & Arda, Y. (2019). The value of integrating order picking and vehicle routing decisions in a B2C e-commerce environment. International Journal of Production Research, 57(20), 6405-6423.
    Moons, S., Ramaekers, K., Caris, A., & Arda, Y. (2018). Integration of order picking and vehicle routing in a B2C e-commerce context. Flexible Services and Manufacturing Journal, 30(4), 813-843.
    Nogueira, G. P. M., de Assis Rangel, J. J., & Shimoda, E. (2021). Sustainable last-mile distribution in B2C e-commerce: Do consumers really care? Cleaner and Responsible Consumption, 3, 100021.
    Omidvar, A., & Tavakkoli-Moghaddam, R. (2012). Sustainable vehicle routing: Strategies for congestion management and refueling scheduling. 2012 IEEE international energy conference and exhibition (ENERGYCON),
    Petersen, C. (2009, 01/05). An evaluation of order picking policies for mail order companies. Production and Operations Management, 9, 319-335.
    Purshouse, R. C., & Fleming, P. J. (2002). Why use elitism and sharing in a multi-objective genetic algorithm? Proceedings of the 4th Annual Conference on Genetic and Evolutionary computation,
    Rogers, E. M., Singhal, A., & Quinlan, M. M. (2014). Diffusion of innovations. In An integrated approach to communication theory and research (pp. 432-448). Routledge.
    Schmid, V., Doerner, K. F., & Laporte, G. (2013). Rich routing problems arising in supply chain management. European Journal of Operational Research, 224(3), 435-448.
    Schubert, D., Scholz, A., & Wäscher, G. (2018). Integrated order picking and vehicle routing with due dates. OR Spectrum, 40(4), 1109-1139.
    Shang, K., Ishibuchi, H., He, L., & Pang, L. M. (2020). A survey on the hypervolume indicator in evolutionary multiobjective optimization. IEEE Transactions on evolutionary computation, 25(1), 1-20.
    Statista. (2022). E-commerce worldwide - Statistics & Facts. Retrieved from https://www.statista.com/statistics/534123/e-commerce-share-of-retail-sales-worldwide/
    Ubeda, S., Arcelus, F. J., & Faulin, J. (2011). Green logistics at Eroski: A case study. International Journal of Production Economics, 131(1), 44-51.
    Wei, M., Jing, B., Yin, J., & Zang, Y. (2020). A green demand-responsive airport shuttle service problem with time-varying speeds. Journal of Advanced Transportation, 2020.
    Xiao, Y., Zhao, Q., Kaku, I., & Xu, Y. (2012). Development of a fuel consumption optimization model for the capacitated vehicle routing problem. Computers & operations research, 39(7), 1419-1431.
    Yeh, L.-T. (2020). Using Tabu Search for Integrated Batch Picking and Vehicle Routing Problem. National Cheng Kung University Department of Transportation & Communication Management Science.
    Zhang, J., Liu, F., Tang, J., & Li, Y. (2019). The online integrated order picking and delivery considering Pickers’ learning effects for an O2O community supermarket. Transportation Research Part E: Logistics and Transportation Review, 123, 180-199.
    Zhang, J., Wang, X., & Huang, K. (2016). Integrated on-line scheduling of order batching and delivery under B2C e-commerce. Computers & Industrial Engineering, 94, 280-289.
    Zhang, J., Wang, X., & Huang, K. (2018). On-line scheduling of order picking and delivery with multiple zones and limited vehicle capacity. Omega, 79, 104-115.
    Zhang, L.-Y., Tseng, M.-L., Wang, C.-H., Xiao, C., & Fei, T. (2019). Low-carbon cold chain logistics using ribonucleic acid-ant colony optimization algorithm. Journal of Cleaner Production, 233, 169-180.
    Zhang, S., Lee, C., Choy, K., Ho, W., & Ip, W. (2014). Design and development of a hybrid artificial bee colony algorithm for the environmental vehicle routing problem. Transportation Research Part D: Transport and Environment, 31, 85-99.
    Zhou, Y., & Wang, J. (2014). A local search-based multiobjective optimization algorithm for multiobjective vehicle routing problem with time windows. IEEE Systems Journal, 9(3), 1100-1113.
    Zitzler, E., & Thiele, L. (1998). Multiobjective optimization using evolutionary algorithms—a comparative case study. Parallel Problem Solving from Nature—PPSN V: 5th International Conference Amsterdam, The Netherlands September 27–30, 1998 Proceedings 5,
    葉麗婷(2020)。以禁忌搜尋法求解整合批次揀貨與車輛排程問題。國立成功大學交通管理科學系碩士班。
    賴翊瑋(2022)。以NSGA-II法求解雙目標整合批次揀貨及車輛路徑問題。國立成功大學交通管理科學系碩士班。

    下載圖示 校內:2025-08-23公開
    校外:2025-08-23公開
    QR CODE