簡易檢索 / 詳目顯示

研究生: 王佐文
Wang, Tso-Wen
論文名稱: 探討胰臟星狀細胞中CEBPD所誘發的纖維化現象及其後續對胰臟癌之影響
Investigation of CEBPD-induced fibrosis in pancreatic stellate cells and consequent effects on pancreatic cancers
指導教授: 王育民
Wang, Ju-Ming
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物資訊與訊息傳遞研究所
Insitute of Bioinformatics and Biosignal Transduction
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 62
中文關鍵詞: CEBPDHIF1-αHDGF細胞凋亡纖維化胰臟星狀細胞
外文關鍵詞: CEBPD, HIF1-α, HDGF, apoptosis, fibrosis, PSCs
相關次數: 點閱:116下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 胰臟癌是一個具有破壞性且預後不佳的疾病。胰臟腫瘤周圍有明顯的不正常纖維化組織生長是其主要特徵。胰臟癌預後不佳的原因之一是因為胰臟星狀細胞不正常的活化與增生。以往的文獻指出,胰臟星狀細胞的活化會造成胰臟纖維化(pancreatic fibrosis),而該纖維化現象也會使化療藥物不易通透進而影響導致藥效不佳的情形。活化的胰臟星狀細胞會與胰臟癌細胞緊密地交互作用,並且產生細胞外基質堆積,以幫助胰臟癌進程。另外,活化的胰臟星狀細胞具有較強的抗細胞凋亡的能力。CCAAT/enhancer binding protein delta (CEBPD)是一個轉錄因子,已知參與在細胞的免疫,發炎反應,分化以及凋亡。然而,CEBPD在胰臟星狀細胞當中所扮演的角色,以及後續對胰臟癌的影響仍未被清楚探討。在本研究中,我們發現TGFβ1可以誘發胰臟星狀細胞中CEBPD的表現。一些有關於胰臟星狀細胞纖維化有關的基因,如:HIF1-α、α-SMA及HDGF的mRNA表現量都會被TGF1或大量增加的CEBPD所刺激增加。同時,也會因為CEBPD的剔除(knockdown)而表現量降低。在正常氧氣濃度環境下,CEBPD可增加HIF1-α基因的啟動子活性。在胰臟星狀細胞中,減少CEBPD的表現會增加MMS所誘發的細胞凋亡能力。而加入HDGF則可降低MMS所誘發的細胞凋亡。將分別CEBPD、HIF1-α或HDGF減少的胰臟星狀細胞與胰臟癌細胞共同培養,發現胰臟纖維化的形成有降低的情形,並且胰臟癌細胞的生長速度也會被抑制。綜合以上結果,CEBPD會調控胰臟星狀細胞的活化以及其抗細胞凋亡的能力,且被CEBPD所調控的HIF1-α與HDGF對胰臟纖維化以及胰臟星狀細胞的抗凋亡有所貢獻。

    Pancreatic cancer is a destructive disease with a poor prognosis and characterized by a prominent desmoplastic reaction. A major reason for the poor prognosis is chemotherapy resistance. Pancreatic stellate cells (PSCs) are the major source of pancreatic fibrosis. Importantly, fibrosis has been suggested to contribute in chemotherapy resistance of pancreatic cancers. When PSCs activated, it changes its phenotype from quiescent and differentiate to myofibroblast, and interacts with cancer cells closely to make extracellular matrix (ECM) deposition to further result in fibrosis. Increase of anti-apoptotic activity is a feature in fibrotic cells. CCAAT/enhancer binding protein delta (CEBPD) is a transcription factor which participates in many immune and inflammatory responses, cell differentiation, and apoptosis. However, the function of CEBPD in PSCs and consequent effects in cancer development remain largely uninvestigated. In this study, we found that TGFβ1 can induce the expression of CEBPD in PSCs. In gene expression, HIF1-α, α-SMA and HDGF mRNAs were induced in PSCs treated with TGFβ1 or exogenously expressed CEBPD. Meanwhile, HIF1-α, α-SMA, and HDGF transcripts were decreased in CEBPD-knockdown PSCs upon TGFβ1 treatment. Additionally, CEBPD can enhance HIF1-α promoter activity in normoxia. Interestingly, CEBPD-knockdown PSCs sensitized to MMS-induced apoptosis. The pre-treatment of HDGF protected cell to MMS-induced apoptosis. Furthermore, the conditioned medium of CEBPD- or HIF1-α- or HDGF-knockdown PSCs can reduce pancreatic fibrosis and proliferation of pancreatic cancer cells. Our results showed that CEBPD contributed to the activation and anti-apoptotic activity of PSCs. The transcripts of α-SMA, HIF1-α and HDGF genes were responsive to induction of CEBPD in PSCs, which contributes to the formation of fibrosis and anti-apoptosis of PSCs.

    Abstract I Abstract in Chinese III Acknowledgments V Figure Contents X Appendixes XII Chapter 1 Introduction 1 1-1 Pancreatic cancer (PCa) 1 1-2 The mechanism of drug resistance in PCa 1 1-3 Pancreatic stellate cells (PSCs) 2 1-4 Roles of PSCs in pancreas 2 1-5 Pancreatic fibrosis 3 1-6 Roles of PSCs in pancreatic fibrosis and tumor progression 3 1-7 CCAAT/enhancer-binding protein family 4 1-8 CEBPD in myofibroblast activation and fibrosis 5 1-9 Transforming growth factor-beta 1 (TGFβ1) 5 1-10 Hypoxia-inducible factor 1-alpha (HIF1-α) 6 1-11 Hepatoma-derived growth factor (HDGF) 7 Chapter 2 Materials and Methods 8 2-1 Materials 8 2-2 Methods 9 Cell culture 9 Reverse transcription polymerase chain reaction (RT-PCR) 9 Reporter plasmids and Liciferase assays 10 Lentiviral shRNA assay 10 Immunofluorescence (IF) assay 11 Cell apoptosis analysis 12 TUNEL assay 12 Western blotting assay 13 Protein stability assay 13 mRNA half-life assay 13 Caspase-3/7 activity assay 14 Co-culture assay 14 Conditioned medium collection 14 Statistical analysis 14 Chapter 3 Result 15 3-1 TGFβ1 induced PSCs activation and anti-apoptosis 15 3-2 CEBPD mediates TGFβ1-induced PSCs activation and anti-apoptosis 15 3-3 HIF1-α involves in CEBPD-induced PSCs activation and anti-apoptosis 16 3-4 CEBPD induces HIF1-α expression in normoxia through increasing HIF1-α promoter activity 17 3-5 HDGF is the downstream target of CEBPD-induced PSCs activation and regulated by HIF1-α 17 3-6 HDGF plays an anti-apoptotic role in PSCs 18 3-7 knockdown of various gene (CEBPD, HIF1-α, and HDGF) in PSCs inhibit pancreatic fibrosis with co-culture PCCs 19 Chapter 4 Discussion 21 Reference 27 Figures and legends 34 Appendix 62

    1. Hidalgo, M., Pancreatic cancer. N Engl J Med, 2010. 362(17): p. 1605-17.
    2. Jemal, A., et al., Cancer statistics, 2008. CA Cancer J Clin, 2008. 58(2): p. 71-96.
    3. Cleary, S.P., et al., Prognostic factors in resected pancreatic adenocarcinoma: analysis of actual 5-year survivors. J Am Coll Surg, 2004. 198(5): p. 722-31.
    4. Wang, Z., et al., Pancreatic cancer: understanding and overcoming chemoresistance. Nat Rev Gastroenterol Hepatol, 2011. 8(1): p. 27-33.
    5. Masamune, A., et al., Fibrinogen induces cytokine and collagen production in pancreatic stellate cells. Gut, 2009. 58(4): p. 550-9.
    6. Higgins, C.F., ABC transporters: from microorganisms to man. Annu Rev Cell Biol, 1992. 8: p. 67-113.
    7. Gottesman, M.M. and S.V. Ambudkar, Overview: ABC transporters and human disease. J Bioenerg Biomembr, 2001. 33(6): p. 453-8.
    8. Lage, H., An overview of cancer multidrug resistance: a still unsolved problem. Cell Mol Life Sci, 2008. 65(20): p. 3145-67.
    9. Ashworth, A., Drug resistance caused by reversion mutation. Cancer Res, 2008. 68(24): p. 10021-3.
    10. Ghobrial, I.M., T.E. Witzig, and A.A. Adjei, Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin, 2005. 55(3): p. 178-94.
    11. Kim, M.P. and G.E. Gallick, Gemcitabine resistance in pancreatic cancer: picking the key players. Clin Cancer Res, 2008. 14(5): p. 1284-5.
    12. Liau, S.S., A. Jazag, and E.E. Whang, HMGA1 is a determinant of cellular invasiveness and in vivo metastatic potential in pancreatic adenocarcinoma. Cancer Res, 2006. 66(24): p. 11613-22.
    13. Masamune, A., et al., Roles of pancreatic stellate cells in pancreatic inflammation and fibrosis. Clin Gastroenterol Hepatol, 2009. 7(11 Suppl): p. S48-54.
    14. Apte, M.V., et al., Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut, 1998. 43(1): p. 128-33.
    15. Omary, M.B., et al., The pancreatic stellate cell: a star on the rise in pancreatic diseases. J Clin Invest, 2007. 117(1): p. 50-9.
    16. Apte, M.V., et al., Desmoplastic reaction in pancreatic cancer: role of pancreatic stellate cells. Pancreas, 2004. 29(3): p. 179-87.
    17. Apte, M.V., R.C. Pirola, and J.S. Wilson, Battle-scarred pancreas: role of alcohol and pancreatic stellate cells in pancreatic fibrosis. J Gastroenterol Hepatol, 2006. 21 Suppl 3: p. S97-s101.
    18. Apte, M.V., et al., Pancreatic stellate cells are activated by proinflammatory cytokines: implications for pancreatic fibrogenesis. Gut, 1999. 44(4): p. 534-41.
    19. Phillips, P.A., et al., Rat pancreatic stellate cells secrete matrix metalloproteinases: implications for extracellular matrix turnover. Gut, 2003. 52(2): p. 275-82.
    20. Gao, R. and D.R. Brigstock, Connective tissue growth factor (CCN2) in rat pancreatic stellate cell function: integrin alpha5beta1 as a novel CCN2 receptor. Gastroenterology, 2005. 129(3): p. 1019-30.
    21. Kordes, C., et al., Differential and synergistic effects of platelet-derived growth factor-BB and transforming growth factor-beta1 on activated pancreatic stellate cells. Pancreas, 2005. 31(2): p. 156-67.
    22. Mews, P., et al., Pancreatic stellate cells respond to inflammatory cytokines: potential role in chronic pancreatitis. Gut, 2002. 50(4): p. 535-41.
    23. Vonlaufen, A., et al., Isolation of quiescent human pancreatic stellate cells: a promising in vitro tool for studies of human pancreatic stellate cell biology. Pancreatology, 2010. 10(4): p. 434-43.
    24. Jaster, R., Molecular regulation of pancreatic stellate cell function. Mol Cancer, 2004. 3: p. 26.
    25. Phillips, P.A., et al., Cell migration: a novel aspect of pancreatic stellate cell biology. Gut, 2003. 52(5): p. 677-82.
    26. Apte, M.V. and J.S. Wilson, Stellate cell activation in alcoholic pancreatitis. Pancreas, 2003. 27(4): p. 316-20.
    27. Yokota, T., et al., Pancreatic stellate cell activation and MMP production in experimental pancreatic fibrosis. J Surg Res, 2002. 104(2): p. 106-11.
    28. Bachem, M.G., et al., Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology, 1998. 115(2): p. 421-32.
    29. Lohr, M., et al., Transforming growth factor-beta1 induces desmoplasia in an experimental model of human pancreatic carcinoma. Cancer Res, 2001. 61(2): p. 550-5.
    30. Bachem, M.G., et al., Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology, 2005. 128(4): p. 907-21.
    31. Shek, F.W., et al., Expression of transforming growth factor-beta 1 by pancreatic stellate cells and its implications for matrix secretion and turnover in chronic pancreatitis. Am J Pathol, 2002. 160(5): p. 1787-98.
    32. Mahadevan, D. and D.D. Von Hoff, Tumor-stroma interactions in pancreatic ductal adenocarcinoma. Mol Cancer Ther, 2007. 6(4): p. 1186-97.
    33. Klonowski-Stumpe, H., et al., Production and effects of endothelin-1 in rat pancreatic stellate cells. Pancreas, 2003. 27(1): p. 67-74.
    34. Erkan, M., et al., Cancer-stellate cell interactions perpetuate the hypoxia-fibrosis cycle in pancreatic ductal adenocarcinoma. Neoplasia, 2009. 11(5): p. 497-508.
    35. Hwang, R.F., et al., Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res, 2008. 68(3): p. 918-26.
    36. Vonlaufen, A., et al., Pancreatic stellate cells: partners in crime with pancreatic cancer cells. Cancer Res, 2008. 68(7): p. 2085-93.
    37. Masamune, A., et al., Hypoxia stimulates pancreatic stellate cells to induce fibrosis and angiogenesis in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol, 2008. 295(4): p. G709-17.
    38. Erkan, M., et al., Tumor microenvironment and progression of pancreatic cancer. Exp Oncol, 2010. 32(3): p. 128-31.
    39. Olive, K.P., et al., Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science, 2009. 324(5933): p. 1457-61.
    40. Nerlov, C., The C/EBP family of transcription factors: a paradigm for interaction between gene expression and proliferation control. Trends Cell Biol, 2007. 17(7): p. 318-24.
    41. Roman, C., et al., Ig/EBP-1: a ubiquitously expressed immunoglobulin enhancer binding protein that is similar to C/EBP and heterodimerizes with C/EBP. Genes Dev, 1990. 4(8): p. 1404-15.
    42. Ramji, D.P. and P. Foka, CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J, 2002. 365(Pt 3): p. 561-75.
    43. Tada, Y., et al., Epigenetic modulation of tumor suppressor CCAAT/enhancer binding protein alpha activity in lung cancer. J Natl Cancer Inst, 2006. 98(6): p. 396-406.
    44. Zhu, S., et al., CCAAT/enhancer binding protein-beta is a mediator of keratinocyte survival and skin tumorigenesis involving oncogenic Ras signaling. Proc Natl Acad Sci U S A, 2002. 99(1): p. 207-12.
    45. Grimm, S.L. and J.M. Rosen, The role of C/EBPbeta in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia, 2003. 8(2): p. 191-204.
    46. Ko, C.Y., et al., Epigenetic silencing of CCAAT/enhancer-binding protein delta activity by YY1/polycomb group/DNA methyltransferase complex. J Biol Chem, 2008. 283(45): p. 30919-32.
    47. Takeji, M., et al., CCAAT/Enhancer-binding protein delta contributes to myofibroblast transdifferentiation and renal disease progression. J Am Soc Nephrol, 2004. 15(9): p. 2383-90.
    48. Gery, S., et al., C/EBPdelta expression in a BCR-ABL-positive cell line induces growth arrest and myeloid differentiation. Oncogene, 2005. 24(9): p. 1589-97.
    49. Massague, J., TGF-beta signal transduction. Annu Rev Biochem, 1998. 67: p. 753-91.
    50. Schneider, E., et al., Identification of mediators stimulating proliferation and matrix synthesis of rat pancreatic stellate cells. Am J Physiol Cell Physiol, 2001. 281(2): p. C532-43.
    51. Luttenberger, T., et al., Platelet-derived growth factors stimulate proliferation and extracellular matrix synthesis of pancreatic stellate cells: implications in pathogenesis of pancreas fibrosis. Lab Invest, 2000. 80(1): p. 47-55.
    52. Masamune, A. and T. Shimosegawa, Signal transduction in pancreatic stellate cells. J Gastroenterol, 2009. 44(4): p. 249-60.
    53. Semenza, G.L. and G.L. Wang, A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol, 1992. 12(12): p. 5447-54.
    54. Wenger, R.H., D.P. Stiehl, and G. Camenisch, Integration of oxygen signaling at the consensus HRE. Sci STKE, 2005. 2005(306): p. re12.
    55. Semenza, G.L., Intratumoral hypoxia, radiation resistance, and HIF-1. Cancer Cell, 2004. 5(5): p. 405-6.
    56. Komar, G., et al., Decreased blood flow with increased metabolic activity: a novel sign of pancreatic tumor aggressiveness. Clin Cancer Res, 2009. 15(17): p. 5511-7.
    57. Min, Y., et al., C/EBP-delta regulates VEGF-C autocrine signaling in lymphangiogenesis and metastasis of lung cancer through HIF-1alpha. Oncogene, 2011. 30(49): p. 4901-9.
    58. Balamurugan, K., et al., The tumour suppressor C/EBPdelta inhibits FBXW7 expression and promotes mammary tumour metastasis. Embo j, 2010. 29(24): p. 4106-17.
    59. Basu, R.K., et al., Interdependence of HIF-1alpha and TGF-beta/Smad3 signaling in normoxic and hypoxic renal epithelial cell collagen expression. Am J Physiol Renal Physiol, 2011. 300(4): p. F898-905.
    60. Nakamura, H., et al., Partial purification and characterization of human hepatoma-derived growth factor. Clin Chim Acta, 1989. 183(3): p. 273-84.
    61. Nakamura, H., et al., Molecular cloning of complementary DNA for a novel human hepatoma-derived growth factor. Its homology with high mobility group-1 protein. J Biol Chem, 1994. 269(40): p. 25143-9.
    62. Everett, A.D., T. Stoops, and C.A. McNamara, Nuclear targeting is required for hepatoma-derived growth factor-stimulated mitogenesis in vascular smooth muscle cells. J Biol Chem, 2001. 276(40): p. 37564-8.
    63. Enomoto, H., et al., Hepatoma-derived growth factor is highly expressed in developing liver and promotes fetal hepatocyte proliferation. Hepatology, 2002. 36(6): p. 1519-27.
    64. Mori, M., et al., Hepatoma-derived growth factor is involved in lung remodeling by stimulating epithelial growth. Am J Respir Cell Mol Biol, 2004. 30(4): p. 459-69.
    65. Zhang, J., et al., Down-regulation of hepatoma-derived growth factor inhibits anchorage-independent growth and invasion of non-small cell lung cancer cells. Cancer Res, 2006. 66(1): p. 18-23.
    66. Yamamoto, S., et al., Expression of hepatoma-derived growth factor is correlated with lymph node metastasis and prognosis of gastric carcinoma. Clin Cancer Res, 2006. 12(1): p. 117-22.
    67. Uyama, H., et al., Hepatoma-derived growth factor is a novel prognostic factor for patients with pancreatic cancer. Clin Cancer Res, 2006. 12(20 Pt 1): p. 6043-8.
    68. Yoshida, K., et al., Expression of hepatoma-derived growth factor in hepatocarcinogenesis. J Gastroenterol Hepatol, 2003. 18(11): p. 1293-301.
    69. Kishima, Y., et al., Hepatoma-derived growth factor stimulates cell growth after translocation to the nucleus by nuclear localization signals. J Biol Chem, 2002. 277(12): p. 10315-22.
    70. Kao, Y.H., et al., Upregulation of hepatoma-derived growth factor is involved in murine hepatic fibrogenesis. J Hepatol, 2010. 52(1): p. 96-105.
    71. Clermont, F., et al., HDGF is dephosphorylated during the early steps of endothelial cell apoptosis in a caspase-dependent way. J Cell Biochem, 2008. 104(4): p. 1161-71.
    72. Tsang, T.Y., et al., Downregulation of hepatoma-derived growth factor activates the Bad-mediated apoptotic pathway in human cancer cells. Apoptosis, 2008. 13(9): p. 1135-47.
    73. Machuy, N., et al., A global approach combining proteome analysis and phenotypic screening with RNA interference yields novel apoptosis regulators. Mol Cell Proteomics, 2005. 4(1): p. 44-55.
    74. Wehr, A.Y., et al., Analysis of the human pancreatic stellate cell secreted proteome. Pancreas, 2011. 40(4): p. 557-66.
    75. Manapov, F., P. Muller, and J. Rychly, Translocation of p21(Cip1/WAF1) from the nucleus to the cytoplasm correlates with pancreatic myofibroblast to fibroblast cell conversion. Gut, 2005. 54(6): p. 814-22.
    76. McCarroll, J.A., et al., Vitamin A inhibits pancreatic stellate cell activation: implications for treatment of pancreatic fibrosis. Gut, 2006. 55(1): p. 79-89.
    77. Wada, T. and J.M. Penninger, Mitogen-activated protein kinases in apoptosis regulation. Oncogene, 2004. 23(16): p. 2838-49.
    78. Pan, Y.C., et al., CEBPD reverses RB/E2F1-mediated gene repression and participates in HMDB-induced apoptosis of cancer cells. Clin Cancer Res, 2010. 16(23): p. 5770-80.
    79. Balamurugan, K. and E. Sterneck, The many faces of C/EBPdelta and their relevance for inflammation and cancer. Int J Biol Sci, 2013. 9(9): p. 917-33.
    80. Yee Koh, M., T.R. Spivak-Kroizman, and G. Powis, HIF-1 regulation: not so easy come, easy go. Trends Biochem Sci, 2008. 33(11): p. 526-34.
    81. Piret, J.P., et al., Is HIF-1alpha a pro- or an anti-apoptotic protein? Biochem Pharmacol, 2002. 64(5-6): p. 889-92.
    82. Mueller, M.M. and N.E. Fusenig, Friends or foes - bipolar effects of the tumour stroma in cancer. Nat Rev Cancer, 2004. 4(11): p. 839-49.
    83. Ren, H., Z. Chu, and L. Mao, Antibodies targeting hepatoma-derived growth factor as a novel strategy in treating lung cancer. Mol Cancer Ther, 2009. 8(5): p. 1106-12.

    下載圖示 校內:2019-08-22公開
    校外:2019-08-22公開
    QR CODE