| 研究生: |
周冠宇 Chou, Kuan-Yu |
|---|---|
| 論文名稱: |
奈米流體於C型混沌渠道之數值模擬與最佳化 Numerical Simulation and Optimization of nanofluid in a C-shaped chaotic channel |
| 指導教授: |
楊玉姿
Yang, Yue-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 奈米流體 、C型渠道 、混沌道 、單向模型 、兩相模型 、基因演算法 、最佳化 |
| 外文關鍵詞: | Nanofluids, C-shaped channel, Two-phase model, Genetic algorithm, Optimization |
| 相關次數: | 點閱:109 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討單相與兩相模型氧化銅奈米流體於三維強制對流等熱通量之C型渠道之數值計算。應用控制體積法求解氧化銅奈米流體強制對流之耦合、穩態、三維橢圓偏微分方程式。研究參數包括雷諾數、奈米粒子體積濃度、無因次渠道深度、無因次渠道高度以及無因次轉角處之寬度 。
首先以奈米流體於混沌流之層流熱傳增益與參考文獻的可用數據做驗證,最大誤差在3%以內,再進一步擴展至C型渠道幾何形狀的設計。在混沌渠道內,流體流動方向改變造成混合效果與熱傳性能的增強。從數值結果中發現,雖然C型混沌渠道可以提高傳熱能力,但C型渠道引起幾何的擾動造成壓降增加導致泵浦功率的增加。提供模型的數值結果顯示單相模型與兩相模型對於奈米流體在流場與熱傳特性上有些不同。發現兩相模型在熱場上與單相模型有很大的差異,但流場方面單相與兩相模型幾乎是相同的。
此外,在比較單相模型與兩相模型的數值結果後,使用實驗設計(DOE),反應曲面法(RSM),基因演算法 (GA)得到目標函數E與四個設計參數即無因次渠道深度、無因次渠道高度、無因次轉角處之寬度以及奈米粒子體積濃度之間的關係式。熱性能係數的預測值及CFD模擬結果,兩者在各雷諾數下的誤皆差在10%內。並從數值最佳化結果顯示單相模型與兩相模型之最佳組C型渠道較原尺寸C型渠道分別達到16%與22%的熱傳增益。
In present study, a C-shaped channel is selected as geometry of the chaotic channel, and the nanofluid at various particle concentrations are simulated by single and two-phase model in the laminar flow. The parameters studied include Reynolds number, nanoparticle volume concentration, the dimensionless depth, the dimensionless height and the dimensionless width.
The laminar heat transfer enhancement using nanofluid in a chaotic flow is validated with the available in the literature first, the maximum discrepancy within 3%, and then further extend to design the C-shaped geometry. Numerical simulations reveal that the combination of nanofluid and chaotic channel can be an effective way to increase the effect of heat transfer. The results show that single-phase and two-phase models predict almost identical hydrodynamic fields but very different for thermal field. In addition, the multi-parameter constrained optimization procedure integrating the design of experiments (DOE), response surface methodology (RSM), genetic algorithm (GA) and computational fluid dynamics (CFD) is proposed to design the nanofluid laminar convection of three-dimensional C-shaped channel. The numerical optimization indicates that the enhancement of the objective function E can achieve 16% and 22% with single and two-phase models, respectively.
[1] Jones, S. W., Thomas, O. M., Aref, H. (1989), Chaotic advection by laminar flow in a twisted pipe, J. Fluid Mech., 209, pp. 209–335
[2] Acharya, N., Sen M., Chang, H.C. (1992), Heat transfer enhancement in coiled tubes by chaotic mixing, Int. J. Heat Mass Transfer, 35, pp. 2475–2489.
[3] Branebjerg, J., Gravesen, P., Krog, J. P. , Nielsen, C. R. (1996), Fast mixing by lamination,in Proc. IEEE MEMS Workshop, San Diego, CA. pp. 441–446.
[4] Stremler, M. A., Aref, H., Chaotic advection in a static microscale mixer, Bull. Amer. Phys. Soc., American Physical Society, Division of Fluid Dynamics Meeting, November 22-24, 1998 Philadelphia, PA, abstract #NK 0443.
[5] Aref, H. (2002), The development of chaotic advection, Phys. Fluids, 14, pp. 1315–1325.
[6] Liu, R. H., Stremler, M. A., Sharp, K. V., Olsen, M. G., Santiago, J. G., Adrian, R. J., Aref, H., Beebe, D. J. (2000), Passive mixing in a three-dimensional serpentine microchannel, J. Microelectromech. Syst., 9 (2), pp. 190–197.
[7] Beebe, D. J., Adrian, R. J., Olsen, M. G., Stremler, M. A., Aref, H., Jo, B. H. (2001), Passive mixing in microchannels: fabrication and flow experiments, Mec. Ind., 2 (4), pp. 343–348.
[8] Lasbet, Y., Auvity, B., Castelain, C., Peerhossaini, H., (2006), A chaotic heat-exchanger for PEMFC cooling applications, J. Power Sources, 156 (1), pp. 114–118.
[9] Castelain, C., Mokrani, A., Le Guer, Y., Peerhossaini, H., (2001), Experimental study of chaotic advection regime in a twisted duct flow, Eur. J. Mech.-B/Fluids, 20 (2), pp. 205–232.
[10] Lin, K. W., Yang, J. T. (2007), Chaotic mixing of fluids in a planar serpentine channel, Int. J. Heat Mass Transfer, 50, pp. 1269–1277.
[11] Tohidi A., Hosseinalipour S. M., Ghasemi Monfared Z., Mujumdar A. (2014), Laminar heat transfer enhancement utilizing nanofluids in a chaotic flow, ASME J. Heat Transfer, 136 (9), paper no. 091704.
[12] Mehi, B., Morteza, H. (2014), Numerical simulation of nanofluid application in a C-shaped channel: A potential approach for energy efficiency improvement, Energy, 74, pp. 863–870.
[13] Choi, S. U., Eastman, J. (1995), Enhancing thermal conductivity of fluids with nanoparticles, ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, pp. 12–17.
[14] Eastman, J. A., Choi, U. S., Li, S., Thompson, L.J., Lee, S. (1996), Enhanced thermal conductivity through the development of nanofluids, Materials Research Society Symposium-Proceedings, 457, pp. 3–11.
[15] Maxwell, J. C., Electricity and Magnetism (1st ed.), Oxford, England: Clarendon Press, 1873.
[16] Keblinski, P., Phillpot, S., Choi, S. (2002), Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), Int. J. Heat Mass Transfer, 45 (4), pp. 855–863.
[17] Buongiorno, J. (2006), “Convective transport in nanofluids, ASME J. Heat Transfer, 128 (3), pp. 240–250.
[18] Das, S. K., Choi, S. U. S., Patel, H. E. (2006), Heat transfer in nanofluids – a review, Heat Transfer Engineering, 37, pp. 3–19.
[19] Wang, J., Wang, M., Li, Z. (2007), A lattice Boltzmann algorithm for fluid–solid conjugate heat transfer, Int. J. Thermal Sciences, 46, pp. 228–234.
[20] Yu, W. H., France, D. M., Routbort, J. L., Choi, S.U.S. (2008), Review and comparison of nanofluid thermal conductivity and heat transfer enhancements, Heat Transfer Engineering, 29, pp. 432–460.
[21] Özerinç, S., Kakaç, S., YazIcIoǧlu, A.G. (2010), Enhanced thermal conductivity of nanofluids: a state-of-the-art review, Microfluidics and Nanofluidics, 8, pp. 145–170.
[22] Nguyen, C. T., Desgranges, F., Roy, G., Galanis, N., Maré, T., Boucher, S., Angue Mintsa, H. (2007), Temperature and particle-size dependent viscosity data for water-based nanofluids-hysteresis phenomenon, Int. J. Heat Fluid Flow, 28, pp. 1492–1506.
[23] Maïga, S. E. B., Palm, S. J., Nguyen C. T. (2005), Heat transfer enhancement by using nanofluids in forced convection flows, Int. J. Heat Fluid Flow, 26 (4), pp. 530–546.
[24] Santra, A. K., Sen, S., Chakraborty, N. (2009), Study of heat transfer due to laminar flow of copper-water nanofluid through two isothermally heated parallel plates, Int. J. Thermal Sciences, 48, pp. 391–400.
[25] Mohammed, H. A., Gunnasegaran, P., Shuaib, N. H. (2010), Heat transfer in rectangular microchannels heat sink using nanofluids, Int. J. Heat Mass Transfer, 37, pp. 1496–1503.
[26] Li, Jie, Kleinstreuer, Clement (2008), Thermal performance of nanofluid flow in microchannels, Heat and Fluid Flow, 29, pp. 1221–1232.
[27] Singh, K. Pawan, Harikrishna, P.V. (2011), Experimental and numerical investigation into the heat transfer study of nanofluids in microchannel, ASME J. Heat Transfer, 133 (12), paper no. 121701.
[28] Lotfi, R., Saboohi, Y., Rashidid, A. (2010), Numerical study of forced convective heat transfer of nanofluids: comparison of different approaches, Int. Commun. Heat Mass Transfer, 37 (1), pp. 74–78.
[29] Akbari, M., Galanis, N., Behzadmehr, A. (2011), Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer, Int. J. Thermal Sciences, 50, pp. 1343–1354.
[30] Mostafa, K. M., Ardehali, R. M. (2013), CFD modeling (comparing single and two-phase approaches) on thermal performance of Al2O3/water nanofluid in mini-channel heat sink, Int. Commun. Heat and Mass Transfer, 44, pp.157–164.
[31] Liu, D., Garimella, S.V. (2005), Analysis and optimization of the thermal performance of microchannel heat sinks, Int. J. Numerical Methods Heat Fluid Flow, 15 (1), pp. 7–26.
[32] Li, J., Peterson, G. P. (2006), Geometric optimization of a micro heat sink with liquid flow, IEEE Trans. Components and Packaging Technologies, 29 (1), pp. 145–154.
[33] Husain, A., Kim, K.Y. (2008), Shape optimization of micro-channel heat sink for micro-electronic cooling, IEEE Trans. Components and Packaging Technologies, 31 (2), pp. 322–330.
[34] Sasmito, A. P., Kurnia, J. C., Mujumdar, A. S. (2011), Numerical evaluation of laminar heat transfer enhancement in nanofluid flow in coiled square tubes, Nanoscale Res. Lett., 6 (1) pp.1–14.
[35] Kuipers, J. A. M., Prins, W., Van Swaaij, W. P. M. (1992), Numerical calculation of wall to-bed heat-transfer coefficients in gas-fluidized beds, AIChE J, 38, pp. 1079–1091.
[36] Ishii, M., Mishima, K. (1975), Two-fluid dynamic theory of two-phase flow (6th ed.), Paris: Eyrolles.
[37] Patankar, S. V., Numerical Heat Transfer and Fluid Flow, New York: McGraw-Hill, 1980.
[38] Patankar, S. V., Spalding, D.B. (1972), A calculation process for heat, mass and momentum transfer in three-dimension parabolic flows, Int. J. Heat Mass Transfer, 15, pp. 1787–1806.
[39] Box, G. B., Wilson, K. (1951), On the experimental attainment of optimum conditions, J. the Royal Statistical Society, Series B (Methodological), 13 (1), pp. 1–45.
[40] Bagley, J. D. (1967), The behavior of adaptive system which employ genetic and correlation algorithm, Doctor Dissertation, University of Michigan Ann Arbor, MI, USA.
[41] De Jong, K. A. (1975), An analysis of the behavior of a class of genetic adaptive systems, Doctoral Dissertation, University of Michigan Ann Arbor, MI, USA.
[42] Goldberg, D. E., Genetic algorithms in search, optimization and machine learning addison-wesley (1st ed.), Boston: Addison-Wesley Longman Publishing, 1989.
[43] Davis, L. D., Handbook of Genetic Algorithms, (1st ed.), New York: Van Nostrand Reinhold, 1991.
[44] Koza, J. R., Genetic Programming, on the Programming of Computers by Means of Natural Selection (1st ed.), MA, USA: MIT Press Cambridge, 1992.