簡易檢索 / 詳目顯示

研究生: 陳哲文
Chen, Che-Wen
論文名稱: 應用於極紫外光刻技術下之三角化模式匹配熱點分類演算法
Triangle Based Pattern Matching Method for Process Hotspot Classification with Dummification in EUVL
指導教授: 何宗易
Ho, Tsung-Yi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 32
中文關鍵詞: 模式匹配熱點分類極紫外光閃光效應
外文關鍵詞: pattern matching, hotspot classification, EUV flare effect
相關次數: 點閱:84下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在積體電路的製造過程中,儘管已經使用了許多解析度增強技術來改
    善微影技術的成像品質,微影熱點的問題仍然存在。因此,在電路設計的
    階段,準確地偵測出電路中的微影熱點,是相當重要的。隨著積體電路製
    程的進步,極紫外光刻技術的應用能更進一步改善微影技術的成像品質。
    然而,相較於傳統液浸式光刻技術,應用極紫外光刻技術會產生很多複雜
    的光學效應,其中的閃光效應更是一個影響成像品質的重要因素。
    模式匹配是一種廣泛使用於微影熱點偵測和分類的方法,然而為了補
    償極紫外光刻技術所產生的閃光效應,原本的電路中填充了許多的虛擬線
    路,並且在極紫外光刻技術下,電路密度問題也變得更加重要。以上這些
    因素導致現有的模式匹配方法沒有辦法完全適用於極紫外光刻技術下的
    電路。因此我們提出了一個新的兩階段模式匹配演算法來處理微影熱點的
    分類問題。在我們的方法中,我們不只像傳統方法一樣比對了電路元件間
    形狀的相似度,我們還有考慮補償閃光效應的虛擬線路填充及電路元件的
    密度問題。在實驗結果中,經過與其他現有微影熱點分類方法比較,我們
    的演算法在執行時間和分類的準確性上,皆有較好的表現。

    As technology node advances, Extreme Ultraviolet Lithography (EUVL)
    is regarded as the most promising technology for improving the lithographic
    printability. However, there are still several challenges in EUVL like the most
    critical
    are e ect that causes patterning distortions. As a result, dummy lls
    are added to a layout (i.e., dummi cation) to compensate the
    are e ect. Al-though dummy lls are used to alleviate the
    are e ect, process hotspots still
    cannot be fully eliminated and are essential to be detected in the early design
    stages. Pattern matching is one of the most popular and widely-used tech-niques to detect the process hotspots. However, existing pattern-matching-based algorithms may not e ectively detect all process hotspots under the
    consideration of dummi cation. In this thesis, we propose a two-stage triangle-based algorithm for process hotspot classi cation while considering the impact
    of dummi cation in EUVL. Experimental results show that our proposed algo-rithm is very e ective and e cient compared with the state-of-the-art process
    hotspot classi cation algorithm.

    List of Tables v List of Figures vi Chapter 1. Introduction 1 1.1 Our contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 2. Preliminaries 9 2.1 Extreme Ultraviolet Lithography . . . . . . . . . . . . . . . . . . . 9 2.2 Flare E ect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Fill Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 14 Chapter 3. Two-stage Triangle-based Process Hotspot Classi -cation Algorithm 15 3.1 Triangle-based Global Matching . . . . . . . . . . . . . . . . . . . 15 3.2 Triangle-based Detail Matching . . . . . . . . . . . . . . . . . . . 21 3.3 Pattern Similarity Determination . . . . . . . . . . . . . . . . . . 24 Chapter 4. Experimental Results 26 Chapter 5. Conclusions 29 Bibliography 30

    [1] C.-H. Park, Y.-H. Kim, J.-S. Park, K.-D. Kim, M.-H. Yoo, and J.-T.
    Kong, "Systematic approach to correct critical patterns induced by the
    lithography process at the full-chip level," Proceedings of SPIE 3679, pp.
    622{629, 1999.
    [2] L.-P. Gerard T, A. Miloslavsky, A. Ikeuchi, H. Suzuki, S. Kyoh, K.
    Izuha, F. Tseng, and L. Wen, "Correcting lithography hot spots during
    physical-design implementation," Proceedings of SPIE vol. 6349, 2006.
    [3] Y.-T. Yu, Y.-C. Chan, S. Sinha, Iris H.-R. Jiang, and C. Chiang, "Ac-curate process-hotspot detection using critical design rule extraction,"
    Proceedings of ACM/IEEE Design Automation Conference, pp. 1163{
    1168, 2012.
    [4] D. Ding, X. Wu, J. Ghosh, and D. Z. Pan, "Machine learning based
    lithographic hotspot detection with critical-feature extraction and clas-si cation," IC Design and Technology, pp. 219{222, 2009.
    [5] D. Ding, A. J. Torres, F. G. Pikus, and D. Z. Pan, "High performance
    lithographic hotspot detection using hierarchically re nedmachine learn-ing," Proceedings of IEEE/ACM Asia and South Paci c Design Automa-tion Conference, pp. 775{780, 2011.
    [6] Y.-T. Yu, G.-H. Lin, Iris H.-R. Jiang, and C. Chiang, "Machine-learning-based hotspot detection using topological classi cation and critical fea-ture extraction," Proceedings of ACM/IEEE Design Automation Con-ference, pp. 671{676, 2013.
    30
    [7] H. Yao, S. Sinha, C. Chiang, X. Hong and Y. Cai, "E cient Process-Hotspot Detection Using Range Pattern Matching," Proceedings of
    IEEE/ACM International Conference on Computer-Aided Design, pp.
    625{632, 2006.
    [8] A. B. Kahng, C C.-H. Park A and X. X. B, "Fast dual graph based
    hotspot detection," Proceedings of SPIE, vol. 6349, pp. 628{635, 2006.
    [9] Ning Ma, "Automatic IC Hotspot Classi cation and Detection using
    Pattern-Based Clustering," PhD thesis, Engineering IC Mechanical En-gineering, University of California, Berkeley, 2008.
    [10] J. Guo, F. Yang, S. Sinha, C. Chiang, X. Zeng, "Improved tangent space
    based distance metric for accurate lithographic hotspot classi cation,"
    Proceedings of ACM/IEEE Design Automation Conference, pp. 1173{
    1178, 2012.
    [11] S.-Y. Lin, J.-Y. Chen, J.-C. Li, W.-Y. Wen, S.-C. Chang, "A Novel
    Fuzzy Matching Model for Lithography Hotspot Detection," Proceedings
    of ACM/IEEE Design Automation Conference, pp. 681{686, 2013.
    [12] J.-Y. Wuu, F. G. Pikus and M.-S. Malgorzata, "E cient approach to
    early detection of lithographic hotspots using machine learning systems
    and pattern matching," Proceedings of SPIE vol. 7974, 2011.
    [13] S. Mostafa, J. A. Torres, P. Rezk and K. Madkour, "Multi-selection
    method for physical design veri cation applications," Proceedings of
    SPIE vol. 7974, 2011.
    [14] D. Ding, B. Yu ; J. Ghosh and D. Z. Pan, "EPIC: E cient prediction
    of IC manufacturing hotspots with a uni ed meta-classi cation formu-lation," Proceedings of IEEE/ACM Asia and South Paci c Design Au-tomation Conference, pp. 263{270, 2012.
    [15] A. M. Myers, G. F. Lorusso, I. Kim, A. M. Goethals, R. Jonckheere,
    J. Hermans, B. Baudemprez, and K. Ronse., "Experimental validation
    31
    of full- eld extreme ultraviolet lithography
    are and shadowing cor-rections," Journal of Vacuum Science & Technology, 26(6):2215V2219,
    November 2008.
    [16] C. Zuniga, M. Habib, J. Word, G. F. Lorusso, E. Hendrickx, B. Baylav,
    R. Chalasani, and M. Lam., "EUV fare and proximity modeling and
    model-based correction," In Proceedings of SPIE, pp. 79690T, 2011.
    [17] F. M. Schellenberg, J. Word and O. Toublan, "Layout compensation for
    EUV
    are," Proceedings of SPIE vol. 5751, 2005.
    [18] J. Lee, K. Song, C. Kim, Y. Kim and O. Kim, "A study of
    are variation
    in extreme ultraviolet lithography for sub-22nm line and space pattern,"
    Japanese Journal of Applied Physics, pp. 06GD09, Jan. 2010.
    [19] S.-Y. Fang and Y.-W. Chang, "Simultaneous
    are level and
    are
    variation minimization with dummi cation in EUVL," Proceedings of
    ACM/IEEE Design Automation Conference, pp. 1175{1180, 2012.
    [20] E. M. Campbell, "Laser Programs, the rst 25 years, 1972-1997", avail-able from osti.gov., 1998.
    [21] H.-B. Zhang, Y. Du, M. D. F. Wong and R. O. Topalaglu, "E cient
    pattern relocation for EUV blank defect mitigation," Proceedings of
    IEEE/ACM Asia and South Paci c Design Automation Conference, pp.
    719{724, 2012.

    下載圖示 校內:2014-08-02公開
    校外:2018-08-02公開
    QR CODE