| 研究生: |
牛禧 Niu, Xi |
|---|---|
| 論文名稱: |
添加Al, Pr對Zn-25Sn高溫無鉛銲錫的界面潤濕、氧化及機械性質的影響 Effects of the Al, Pr Additions on the Wetting, Oxidation and Mechanical Properties of Zn-25Sn High Temperature Pb-free Solder Alloys |
| 指導教授: |
林光隆
Lin, Kwang-Lung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 193 |
| 中文關鍵詞: | 潤濕力 、接觸角 、納維-斯托克斯方程 、潤濕性能 、界面反應 、金屬間的(化合物) 、稀土 、機械性質 、微觀組織結構 、高溫無鉛焊錫 |
| 外文關鍵詞: | wetting force, contact angle, Navier-Stokes equation, wettability, interfacial reaction, intermetallic, rare earth, mechanical properties, microstructure, high temperature Pb- free solder |
| 相關次數: | 點閱:218 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Zn-25Sn 是有工業應用潛力的高溫無鉛焊錫。但是由於Zn含量較高而導致其抗氧化性較差。針對這種現象,本文研究了Zn-25Sn- XAl(X=0~0.25 wt%) -YPr ( Y=0~ 0.15wt%)高溫無鉛焊錫的相關性能,包括潤濕行為、Al和Pr提高合金潤濕性能的可行性、焊錫與銅基材的潤濕和界面反應、焊錫的微觀組織結構和機械性質。試驗儀器方面包含潤濕天平、掃描電鏡、電子探針微量分析儀、透射電鏡及能譜分析、熱重分析、拉伸試驗。
為了获得在浸沒階段的潤濕時間和初始潤濕行為的關聯,本文對非反應及反應系統的初始階段潤濕行為進行了研究。初始階段潤濕行為又可以細分為三個階段。針對第一階段的液體阻力採用了測量和用Navier-Stokes 方程理論計算兩種方法作為對比。提出了一個有潤濕力、潤濕時間、粘滯力、浮力等多變量的公式用於描述此階段的潤濕行為。在第二階段,粘滯力迅速降低。第三階段,可用傳統的潤濕公式表達。
這三個階段的動態潤濕角也可以進行評估。動態潤濕角在第一階段隨著浸沒深度的增加迅速增加并達到一個穩定值,在第二階段迅速降低,在第三階段緩慢降至楊氏方程描述的關於靜止平衡狀態的平衡角度。
在關於非反應系統方程的基礎上,本文繼續研究了反應系統Zn-25Sn-(0, 0.01, 0.05 wt% ) Pr/Cu的初始潤濕中的第一階段。發現動態潤濕角在此階段會變小,這應該是由於反應系統中焊錫與基材的良好潤濕導致的。並且發現在第一階段,大的潤濕曲線斜率對應著好的潤濕性。
在Zn-25Sn中添加0.01wt% Pr 可以提高合金的潤濕力。Zn-25Sn, 添加微量Pr以及Al含量添加小於0.01wt% 的Zn-25Sn合金在空氣中都會發生去潤濕現象(dewetting),但是在Ar氣氛中則不發生去潤濕現象。另外,添加超過0.05wt% Al的Zn-25Sn合金即使在空氣中也不發生去潤濕的現象。去潤濕現象可以通過採用Ar氣氛保護或者是在合金中添加超過0.05wt% Al兩種方式抑制。
在Zn-25Sn 合金中添加0-0.09 wt% 的Al可以提高合金的潤濕性和潤濕力。界面處的金屬間化合物(IMC)厚度隨著Al含量的增加而增長。
在Zn-25Sn-0.05Al 中添加0.01、0.05 wt% Pr可以提高合金的潤濕性並且抑制金屬間化合物的生長。但是高的Pr添加量,如0.08、0.15 wt% Pr卻出現了隨著Pr含量的增加,合金潤濕性變差、金屬間化合物成長加速的現象。在界面處還新發現PrZn3,Pr3Sn5 和 (Cu,Al)4Zn 等化合物。
熱重分析 (TGA) 表明焊錫的抗氧化順序如下: Zn-25Sn-0.05Al-0.05Pr >
Zn-25Sn-0.05Al> Zn-25Sn-0.01Al> Zn-25Sn> Zn-25Sn-0.01Pr> Zn-25Sn-0.05Pr. 同時添加 0.05 wt% Al 和 0.05 wt% Pr可以很好地提高合金的抗氧化活化能。對Zn-25Sn, Zn-25Sn-0.05Al 以及Zn-25Sn-0.05Al-0.05Pr合金表面氧化層的電子光譜化學分析表明Al和Pr都有聚集在合金表面的特性。高解析的透射電鏡(HRTEM)分析表明在Zn-25Sn-0.05Al表面氧化膜中存在Al2O3晶體和(Al, Zn, Sn)Ox非晶體結構,在Zn-25Sn-0.05Al-0.05Pr合金的表面氧化膜中存在Al2O3 、Pr2O3 以及(Al, Pr)Oy非晶體結構,認為正是這種氧化膜的存在提高了合金的抗氧化性。
在Zn-25Sn-XAl ( X= 0, 0.01, 0.03, 0.05, 0.09 wt% )中添加Al 可以細化晶粒、提高合金的過冷度。0-0.09wt% Al使合金的抗拉強度(UTS)由67.28MPa 提高到78.61MPa(提高16.84%)。屈服強度由42.52MPa提高到52.81MPa (提高24.2%)。延伸率則由39.02% 下降到 32.83% 。
Zn-25Sn based alloys possess great potential as candidates for high temperature lead- free solders. But it exhibits poor oxidation resistance due to the high zinc content. This study investigated various solder related properties of the high temperature Zn-25Sn- XAl (X=0~0.25 wt%) -YPr ( Y=0~ 0.15wt%) Pb-free solders. The aspects investigated include the wetting performance, feasibility of Al and rare earth Pr addition for enhancing the wettability, wetting and interfacial reaction between solder and Cu substrate, oxidation resistance of the solders, microstructure and mechanical properties of the solders. The experimental investigations conducted were wetting balance test, scanning electron microscopy (SEM), electron probe microanalysis (EPMA), energy dispersive spectroscopy (EDS) equipped in transmission electron microscopy (TEM), thermal gravimetric analysis
(TGA) and tensile tests.
For clearifying the relationship between wetting time and the initial performance in dipping process, the initial stages of non-reactive and reactive wetting behaviors were investigated. The initial stage of wetting curve was divided into three stages. The liquid impeding force of the first stage was measured by wetting balance and was theoretically analyzed by Navier-Stokes equation for comparison. An equation in terms of wetting force, wetting time, viscous force, and buoyance force was proposed to describe the wetting curve of this stage. The viscous force was found to decrease quickly in the second stage. The third stage was described by the traditional wetting expressions. The dynamic contact angles of each stage were estimated theoretically. The contact angles of the first stage were found to increase rapidly upon dipping and then reach a steady value. The angles decreased rapidly in the second stage. Finally, the angles decreased gradually to reach the thermodynamic equilibrium contact angle described by the Young’s equation. Based on the equations aforementioned, the initial AB stage of Zn-25Sn-(0, 0.01, 0.05 wt% ) Pr was investigated. The contact angle decreases with time due to the good wetting between solder and Cu substrate. The larger values of slope of the initial stage reflected the better wettability.
The addition of 0.01wt% Pr in Zn-25Sn increased the wetting force. However, dewetting was observed under air atmosphere for the Zn-25Sn, Pr-containing solders, and solders containing 0.01wt% Al. It was also found that the dewetting of Pr-containing solders could be avoided under argon atmosphere as well as with higher Al additions.
The wettability and wetting force were improved upon the increasing addition of Al in the range of 0-0.09 wt% in Zn-25Sn alloy. The thickness of intermetallic compounds layers increased with Al additions. The additions of 0.01, 0.05 wt% Pr in Zn-25Sn-0.05Al enhanced the wettability of solders and depressed the growth of intermetallic compounds. However, the higher additions of 0.08, 0.15 wt% Pr in Zn-25Sn-0.05Al degraded the wettability while enhanced the growth of the intermetallic compound. The phases PrZn3, Pr3Sn5 and (Cu,Al)4Zn were formed at the solder/substrate interface.
The results of thermal gravimetric analysis (TGA) indicate that the corrosion resistance of the various solders decreases in the sequence Zn-25Sn-0.05Al-0.05Pr > Zn-25Sn-0.05Al> Zn-25Sn-0.01Al> Zn-25Sn> Zn-25Sn-0.01Pr> Zn-25Sn-0.05Pr. It was found that the addition of 0.05 wt% Al and 0.05 wt% Pr largely increases the oxidation activation energy. A comparison of the results of electron spectroscopy for chemical analysis on the oxidized specimen Zn-25Sn, Zn-25Sn-0.05Al and Zn-25Sn-0.05Al-0.05Pr indicated that the Al and Pr prominently accumulated at the surface of solder. The investigation by high resolution transmission electron microscopy revealed the existence of Al2O3 and Pr2O3 in the surface oxide films of Zn-25Sn-0.05Al and Zn-25Sn-0.05Al-0.05Pr. The oxide film also consists amorphous (Al, Zn, Sn)Ox and (Al, Pr)Oy. It is believed that the formation of the compact oxide film is responsible for the oxidation resistance of the solders.
The addition of Al in Zn-25Sn-XAl ( X= 0, 0.01, 0.03, 0.05, 0.09 wt% ) tends to refine the grain size and increase the undercooling behavior of the solder. The increasing addition of Al up to 0.09wt% enhanced the ultimate tensile strength (UTS) of the alloy from 67.28 to 78.61MPa (16.84% improved), and the yield strength from 42.52 to 52.81MPa (24.2% improved). The strain of the solder degraded from 39.02% to 32.83% when the addtion of Al increased from 0 to 0.09wt%.
References:
[1] L. J. Chen, Microelectronics Materials and Processing (Chinese), Materials Research Society Taiwan, (2000), 385.
[2] M. L. Minges, Electronic Materials Handbook: Packaging, Asm International, (1989).
[3] Y. A. Lin, Synthesis and characteristics of Zn-based alloys for high temperature solder application, Master Thesis (Chinese), National Cheng Kung University, (2009).
[4] M. Abtew, G. Selvaduray, Lead-free solders in microelectronics, Materials Science and Engineering: R: Reports, 27 (2000) 95-141.
[5] Y. Liu, M. Li, D. W. Kim, S. Gu, K. Tu, Synergistic effect of electromigration and Joule heating on system level weak-link failure in 2.5 D integrated circuits, Journal of Applied Physics, 118 (2015) 135304.
[6] J. E. I. D. Association, Challenges and efforts toward commercialization of lead-free solder: road map 2000 for commercialization of lead-free solder, Japan Electric Industry Development Association, February, (2000).
[7] X. Yang, W. Hu, X. Yan, Y. Lei, Microstructure and solderability of Zn-6Al-xSn solders, Journal of Electronic Materials, 44 (2015) 1128-1133.
[8] S. J. Kim, K. S. Kim, S. S. Kim, K. Suganuma, G. Izuta, Improving the reliability of Si die attachment with Zn-Sn-Based high-temperature Pb-free solder using a TiN diffusion barrier, Journal of Electronic Materials, 38 (2009) 2668-2675.
[9] S. J. Kim, K. S. Kim, K. Suganuma, G. Izuta, Interfacial reactions of Si die attachment with Zn-Sn and Au-20Sn high temperature lead-free solders on Cu substrates, Journal of Electronic Materials, 38 (2009) 873-883.
[10] G. Zeng, McDonald, Stuart,Nogita, Kazuhiro, Development of high-temperature solders: review, Microelectronics Reliability, 52 (2012) 1306-1322.
[11] Y. Chen, Global average annual production of 7 kilograms of electronic waste per person (Chinese), China Economic Weekly, 49 (2013) 16.
[12] S. Menon, E. George, M. Osterman, M. Pecht, High lead (over 85%) solder in the electronics industry: RoHS exemptions and alternatives, Journal of Materials Science: Materials in Electronics, 26 (2015) 4021-4030.
[13] K. Suganuma, S. J. Kim, K. S. Kim, High-temperature lead-free solders: properties and possibilities, Journal of the Minerals, Metals and Materials Society, 61 (2009) 64-71.
[14] S. J. Kim, K. S. Kim, S. S. Kim, C. Y. Kang, S. Katsuaki, Characteristics of Zn-Al-Cu alloys for high temperature solder application, Materials Transactions, 49 (2008) 1531-1536.
[15] G. S. Gan, C. H. Du, S. D. G, Development of high -temperature lead -free soldering electronic micro -connection (Chinese), Journal of Functional Materials, 44 (2013) 28-35.
[16] V. R. Manikam, K. Y. Cheong, Die attach materials for high temperature applications: a review, IEEE Transactions on Components, Packaging and Manufacturing Technology, 1 (2011) 457-478.
[17] J. M. Song, H. Y. Chuang, Z. M. Wu, Interfacial reactions between Bi-Ag high-temperature solders and metallic substrates, Journal of Electronic Materials, 35 (2006) 1041-1049.
[18] A. Haque, Y. Won, A. Haseeb, H. Masjuki, Investigations on Zn-Al-Ge alloys as high temperature die attach material, Electronic System-Integration Technology Conference (ESTC), (2010) 1-5.
[19] H. H. Manko, Solders and Soldering, McGraw-Hill, Inc, (1979), 7-8.
[20] H. S. N. Namhyun Kang, Seong Jun Kim, Chung Yun Kang, Alloy design of Zn-Al-Cu solder for ultra high temperatures, Journal of Alloys and Compounds, 467 (2009) 246-250.
[21] V. Chidambaram, J. Hattel, J. Hald, Design of lead-free candidate alloys for high-temperature soldering based on the Au–Sn system, Materials & Design, 31 (2010) 4638-4645.
[22] V. Chidambaram, J. Hald, R. Ambat, J. Hattel, A corrosion investigation of solder candidates for high-temperature applications, Journal of the Minerals, Metals and Materials Society, 61 (2009) 59-65.
[23] H. Baker, H. Okamoto, Alloy Phase Diagrams, ASM International, (1992), 501.
[24] V. Chidambaram, J. Hald, J. Hattel, Development of gold based solder candidates for flip chip assembly, Microelectronics Reliability, 49 (2009) 323-330.
[25] D. G. Ivey, Microstructural characterization of Au/Sn solder for packaging in optoelectronic applications, Micron, 29 (1998) 281-287.
[26] P. Fima, W. Gąsior, A. Sypień, Z. Moser, Wetting of Cu by Bi–Ag based alloys with Sn and Zn additions, Journal of Materials Science, 45 (2010) 4339-4344.
[27] J. N. Lalena, N. F. Dean, M. W. Weiser, Experimental investigation of Ge-doped Bi-11Ag as a new Pb-free solder alloy for power die attachment, Journal of Electronic Materials, 31 (2002) 1244-1249.
[28] R. Kolenák, M. Chachula, Characteristics and properties of Bi-11Ag solder, Soldering & Surface Mount Technology, 25 (2013) 68-75.
[29] J.-M. Song, C.-H. Tsai, Y.-P. Fu, Electrochemical corrosion behaviour of Bi–11Ag alloy for electronic packaging applications, Corrosion Science, 52 (2010) 2519-2524.
[30] J.-M. Song, H.-Y. Chuang, Z.-M. Wu, Substrate dissolution and shear properties of the joints between Bi-Ag alloys and Cu substrates for high-temperature soldering applications, Journal of Electronic Materials, 36 (2007) 1516-1523.
[31] J.-M. Song, H.-Y. Chuang, T.-X. Wen, Thermal and tensile properties of Bi-Ag alloys, Metallurgical and Materials Transactions A, 38 (2007) 1371-1375.
[32] J. E. Lee, K. S. Kim, K. Suganuma, M. Inoue, G. Izuta, Thermal properties and phase stability of Zn-Sn and Zn-In alloys as high temperature lead-free solder, Materials Transactions, 48 (2007) 584-593.
[33] W. L. Santos, C. Brito, J. M. Quaresma, J. E. Spinelli, A. Garcia, Plate-like cell growth during directional solidification of a Zn–20wt% Sn high-temperature lead-free solder alloy, Materials Science and Engineering: B, 182 (2014) 29-36.
[34] V. Chidambaram, J. Hattel, J. Hald, High-temperature lead-free solder alternatives, Microelectronic Engineering, 88 (2011) 981-989.
[35] L. Zhang, J.-G. Han, Y.-H. Guo, L. Sun, Creep behavior of SnAgCu solders containing nano-Al particles, Journal of Materials Science: Materials in Electronics, 26 (2015) 3615-3620.
[36] T. Shimizu, H. Ishikawa, I. Ohnuma, K. Ishida, Zn-Al-Mg-Ga alloys as Pb-free solder for die-attaching use, Journal of Electronic Materials, 28 (1999) 1172-1175.
[37] W. F. Gale, T. C. Totemeier, Smithells Metals Reference Book, Butterworth-Heinemann, (2003).
[38] K. Suganuma, S. Kim, Ultra heat-shock resistant die attachment for silicon carbide with pure zinc, IEEE Electron Device Letters, 31 (2010) 1467-1469.
[39] S. J. Kim, K. S. Kim, S. S. Kim, K. Suganuma, Interfacial reaction and die attach properties of Zn-Sn high-temperature solders, Journal of Electronic Materials, 38 (2008) 266-272.
[40] T. Gancarz, J. Pstruś, P. Fima, S. Mosińska, Thermal properties and wetting behavior of high temperature Zn-Al-In solders, Journal of Materials Engineering and Performance, 21 (2012) 599-605.
[41] A. Haque, Y. Won, B. Lim, A. Haseeb, H. Masjuki, Effect of Ni metallization on interfacial reactions and die attach properties of Zn-Al-Mg-Ga high temperature lead-free solder, in: Electronic Manufacturing Technology Symposium, IEEE-CPMT, (2010), 1-6.
[42] S. W. Yoon, J. R. Soh, H. M. Lee, B.-J. Lee, Thermodynamics-aided alloy design and evaluation of Pb-free solder, Sn Bi In Zn system, Acta Materialia, 45 (1997) 951-960.
[43] W. P. Fang, Y. W. Shi, Z. D. Xia, Y. P. Lei, F. Guo, Research development of high temperature lead-free solders for electronic assembly (Chinese), Electronic Components Materials, 28 (2009) 71-74.
[44] M. Uvarajan, L. Lim, M. Goh, F. Ng, W. Pan, Temperature cycling aging studies of Zn-based solders for high-temperature applications, in: 2015 IEEE 17th Electronics Packaging and Technology Conference (EPTC), IEEE, (2015), 1-5.
[45] F. Cheng, F. Gao, Y. Wang, Y. Wu, Z. Ma, J. Yang, Sn addition on the tensile properties of high temperature Zn–4Al–3Mg solder alloys, Microelectronics Reliability, 52 (2012) 579-584.
[46] J. E. Lee, K. S. Kim, K. Suganuma, J. Takenaka, K. Hagio, Interfacial properties of Zn-Sn alloys as high temperature lead-free solder on Cu substrate, Materials Transactions, 46 (2005) 2413-2418.
[47] S. Park, T. Sugahara, K. Kim, K. Suganuma, Enhanced ductility and oxidation resistance of Zn through the addition of minor elements for use in wide-gap semiconductor die-bonding materials, Journal of Alloys and Compounds, 542 (2012) 236-240.
[48] R. H. Galib, R. Al Hasan, A. Sharif, Study of off-eutectic Zn–xMg high temperature solder alloys, Journal of Materials Science: Materials in Electronics, 27 (2016) 8734-8744.
[49] S. Park, S. Nagao, Y. Kato, H. Ishino, K. Sugiura, K. Tsuruta, K. Suganuma, High-temperature die attachment using Sn-plated Zn solder for power electronics, IEEE Transactions on Components, Packaging and Manufacturing Technology, 5 (2015) 902-909.
[50] Y. Y. Zhang, Y. Q. Tu, New Practical Handbook of Metallic Materials (Chinese), JiangXi Science Press, (1999), 531.
[51] L. Quan, D. Frear, D. Grivas, J. W. Morris, Tensile behavior of Pb-Sn solder/Cu joints, Journal of Electronic Materials, 16 (1987) 203-208.
[52] R. Satoh, M. Ohshima, K. Arakawa, K. Hirota, Structures and tensile properties of cast Pb-Sn alloys, Journal of the Japan Institute of Metals, 49 (1985) 26-33.
[53] K.-A. Lee, Y.-M. Jin, Y.-h. Sohn, J. Namkung, M.-C. Kim, Continuous strip casting, microstructure and properties of Au-Sn soldering alloy, Metals and Materials International, 17 (2011) 7-14.
[54] S. Alibabaie, R. Mahmudi, Microstructure and creep characteristics of Zn–3Cu–xAl ultra high-temperature lead-free solders, Materials & Design, 39 (2012) 397-403.
[55] F. Çay, S. C. Kurnaz, Hot tensile and fatigue behaviour of zinc–aluminum alloys produced by gravity and squeeze casting, Materials & Design, 26 (2005) 479-485.
[56] R. Mahmudi, D. Farasheh, Microstructure and elevated-temperature shear strength of Zn–4Al–3Mg–xSn high-temperature lead-free solders, Microelectronics Reliability, 54 (2014) 1592-1597.
[57] V. Chidambaram, J. Hald, J. Hattel, Development of Au–Ge based candidate alloys as an alternative to high-lead content solders, Journal of Alloys and Compounds, 490 (2010) 170-179.
[58] M. Anwar, S. Murphy, Creep kinetics in compression of sand cast commercial Zn–Al alloys, Materials Science and Technology, 16 (2000) 321-327.
[59] Y. Takaku, L. Felicia, I. Ohnuma, R. Kainuma, K. Ishida, Interfacial reaction between Cu substrates and Zn-Al base high-temperature Pb-free solders, Journal of Electronic Materials, 37 (2008) 314-323.
[60] L. Li, Y. Liu, H. Gao, Z. Gao, Phase formation sequence of high-temperature Zn–4Al–3Mg solder, Journal of Materials Science: Materials in Electronics, 24 (2013) 336-344.
[61] H. Wang, Y. Liu, H. Gao, Z. Gao, Effects of aging on microstructure evolution and mechanical properties of high-temperature Zn-4Al-3Mg solder, Soldering & Surface Mount Technology, 26 (2014) 203-213.
[62] A. Haque, B. Lim, A. Haseeb, H. Masjuki, Die attach properties of Zn–Al–Mg–Ga based high-temperature lead-free solder on Cu lead-frame, Journal of Materials Science: Materials in Electronics, 23 (2012) 115-123.
[63] R. Mahmudi, M. Eslami, Shear strength of the Zn–Sn high-temperature lead-free solders, Journal of Materials Science: Materials in Electronics, 22 (2011) 1168-1172.
[64] R. Mahmudi, D. Farasheh, Impression creep behavior of Zn–4Al–3Mg–xSn high-temperature lead-free solders, Microelectronics Reliability, 55 (2015) 2542-2548.
[65] T. Itoi, F. Sato, Y. Takabayashi, M. Hirohashi, Effect of Sn addition on superplastic properties of Zn-22mass% Al eutectoid alloy, in: Materials Science Forum, Trans Tech Publ, (2016), 518-522.
[66] K. Suganuma, T. Murata, H. Noguchi, Y. Toyoda, Heat resistance of Sn–9Zn solder/Cu interface with or without coating, Journal of Materials Research, 15 (2000) 884-891.
[67] W.-Y. Lin, Development and properties of Zn-Sn based Pb-free solder alloys (Zn-Sn-Ga-Al) for high temperature application National Cheng Kung University, Master Thesis (Chinese), (2011).
[68] W.-C. Huang, The oxidation and wetting behavior of Zn-25Sn-xTi high temperature Pb-free solder alloys, National Cheng Kung University, Master Thesis (Chinese), (2016).
[69] C.-W. Liu, The effect of Cr addition on the wetting behavior between Cu and high temperature Zn-25Sn-0.15Al-0.1Ga-XCr Pb-free solder, National Cheng Kung University, Master Thesis (Chinese), (2014).
[70] C.-H. Wang, H.-H. Chen, P.-Y. Li, Interfacial reactions of high-temperature Zn–Sn solders with Ni substrate, Materials Chemistry and Physics, 136 (2012) 325-333.
[71] S. J. Kim, K. S. Kim, G. Izuta, K. Suganuma, Reliability of die attached AlN-DBC module using Zn-Sn high temperature lead-free solders, in: Electronics System- Integration Technology Conference, ESTC 2008, IEEE, (2008), 411-416.
[72] J.-M. Song, M.-J. Lin, K.-H. Hsieh, T.-Y. Pai, Y.-S. Lai, Y.-T. Chiu, Ball impact reliability of Zn-Sn high-temperature solder joints bonded with different substrates, Journal of Electronic Materials, 42 (2013) 2813-2821.
[73] H.-C. Tu, Mechanical properties and improvement of high temperature Zn-Sn based lead-free solder alloys, National Cheng Kung University , Master Thesis (Chinese), (2013).
[74] T. Takahashi, S. Komatsu, H. Nishikawa, T. Takemoto, Improvement of High-Temperature Performance of Zn-Sn Solder Joint, Journal of Electronic Materials, 39 (2010) 1241-1248.
[75] R. Mahmudi, M. Eslami, Impression creep behavior of Zn-Sn high-temperature lead-free solders, Journal of Electronic Materials, 39 (2010) 2495-2502.
[76] S. W. Park, T. Sugahara, S. Nagao, K. Suganuma, Oxidation resistance and joining properties of Cr-doped Zn bonding for SiC die-attachment, in: 2013 IEEE 63rd Electronic Components and Technology Conference, IEEE, (2013), 1734-1739.
[77] S. Park, S. Nagao, T. Sugahara, K.-S. Kim, K. Suganuma, Retarding intermetallic compounds growth of Zn high-temperature solder and Cu substrate by trace element addition, Journal of Materials Science: Materials in Electronics, 24 (2013) 4704-4712.
[78] S. Mallick, M. S. Kabir, A. Sharif, Study on the properties of Zn–xNi high temperature solder alloys, Journal of Materials Science: Materials in Electronics, 27 (2016) 3608-3618.
[79] P. Kim, J. Jang, T. Lee, K. Tu, Interfacial reaction and wetting behavior in eutectic SnPb solder on Ni/Ti thin films and Ni foils, Journal of Applied Physics, 86 (1999) 6746-6751.
[80] A. M. Tahir, G. Amberg, M. Do-Quang, Initial rapid wetting in metallic systems, Acta Materialia, 61 (2013) 5375-5386.
[81] X. Wang, X. Peng, Y. Duan, B. Wang, Dynamics of spreading of liquid on solid surface, Chinese Journal of Chemical Engineering, 15 (2007) 730-737.
[82] G. H. Tang, H. H. Xia, Y. Shi, Study of wetting and spontaneous motion of droplets on microstructured surfaces with the lattice Boltzmann method, Journal of Applied Physics, 117 (2015) 244902.
[83] Z.-Q. Zhang, X. Dong, H.-F. Ye, G.-G. Cheng, J.-N. Ding, Z.-Y. Ling, Wetting and motion behaviors of water droplet on graphene under thermal-electric coupling field, Journal of Applied Physics, 117 (2015) 074304.
[84] H. D. Solomon, R. E. Delair, J. Thyssen, The high-temperature wetting balance and the influence of grit blasting on brazing of IN718, Welding Journal-New York-, 82 (2003) 278-S.
[85] T. Young, An essay on the cohesion of fluids, Philosophical Transactions of the Royal Society of London, (1805) 65-87.
[86] Dupré, Théorie Méchanique de la Chaleur, and Theorie Mechanique de la Chaleur, Gauthier-Villars, Paris, (1869).
[87] M. E. Schrader, Young-dupre revisited, Langmuir : the ACS journal of surfaces and colloids., 11 (1995) 3585-3589.
[88] I. A. Aksay, C. E. Hoge, J. A. Pask, Phase Distribution in Solid-Liquid-Vapor Systems, in: Surfaces and Interfaces of Glass and Ceramics, Springer, 1974, 299-321.
[89] N. Eustathopoulos, B. Drevet, Mechanisms of Wetting in Reactive Metal/Oxide Systems, MRS Proceedings, 314 (1993) 15.
[90] L. Espie, B. Drevet, N. Eustathopoulos, Experimental study of the influence of interfacial energies and reactivity on wetting in metal/oxide systems, Metallurgical and Materials Transactions A, 25 (1994) 599-605.
[91] J.-I. Lee, S.-W. Chen, H.-Y. Chang, C.-M. Chen, Reactive wetting between molten Sn-Bi and Ni substrate, Journal of Electronic Materials, 32 (2003) 117-122.
[92] H.-y. Chang, S.-w. Chen, D. S.-h. Wong, H.-F. Hsu, Determination of reactive wetting properties of Sn, Sn–Cu, Sn–Ag, and Sn–Pb alloys using a wetting balance technique, Journal of Materials Research, 18 (2003) 1420-1428.
[93] N. Eustathopoulos, Dynamics of wetting in reactive metal ceramic systems, Acta Materialia, 46 (1998) 9.
[94] O. Dezellus, N. Eustathopoulos, Fundamental issues of reactive wetting by liquid metals, Journal of Materials Science, 45 (2010) 4256-4264.
[95] N. Eustathopoulos, Progress in understanding and modeling reactive wetting of metals on ceramics, Journal of Current Opinion in Solid State and Materials Science, 9 (2005) 152-160.
[96] P. Protsenko, A. Terlain, V. Traskine, N. Eustathopoulos, The role of intermetallics in wetting in metallic systems, Journal of Scripta Materialia, 45 (2001) 7.
[97] D. Duvivier, T. D. Blake, J. De Coninck, Toward a predictive theory of wetting dynamics, Langmuir : the ACS journal of surfaces and colloids., 29 (2013) 10132-10140.
[98] T. D. Blake, Haynes, Kinetics of liquid liquid displacement, Journal of Colloid and Interface Science, 30 (1969) 3.
[99] G. Kumar, K. N. Prabhu, Review of non-reactive and reactive wetting of liquids on surfaces, Advances in Colloid and Interface Science, 133 (2007) 61-89.
[100] R. Sedev, The molecular-kinetic approach to wetting dynamics: achievements and limitations, Advances in Colloid and Interface Science, 222 (2015) 661-669.
[101] T. D. Blake, The physics of moving wetting lines, Journal of Colloid and Interface Science, 299 (2006) 1-13.
[102] R. L. Hoffman, A study of the advancing interface. I. Interface shape in liquid—gas systems, Journal of Colloid and Interface Science, 50 (1975) 14.
[103] L. Tanner, The spreading of silicone oil drops on horizontal surfaces, Journal of Physics D: Applied Physics, 12 (1979) 1473.
[104] K. Martorano, M. d. A. Martorano, S. Brandi, Optimal conditions for the wetting balance test, Journal of Materials Processing Technology, 209 (2009) 3089-3095.
[105] R. Bhola, S. Chandra, Parameters controlling solidification of molten wax droplets falling on a solid surface, Journal of Materials Science, 34 (1999) 12.
[106] M. D. Lelah, A. Marmur, Spreading kinetics of drops on glass, Journal of Colloid and Interface Science, 82 (1981) 518-525.
[107] C.-W. Liu, K.-L. Lin, Effect of Cr addition on wetting behavior between Cu and high-temperature Zn-25Sn-0.15 Al-0.1 Ga-xCr Pb-free solder, Journal of Electronic Materials, 43 (2014) 4502-4509.
[108] H. Wang, S. Xue, W. Chen, Effects of Al addition on corrosion resistance and high-temperature oxidation resistance of Sn-9Zn lead-free solder, Electric Welding Machine, 38 (2008) 61-64.
[109] S. C. Cheng, K. L. Lin, The thermal property of lead-free Sn-8.55 Zn-1Ag-XAl solder alloys and their wetting interaction with Cu, Journal of Electronic Materials, 31 (2002) 940-945.
[110] T.-C. Hsuan, K.-L. Lin, Microstructural evolution of ɛ-AgZn3 and η-Zn phases in Sn–8.5Zn–0.5Ag–0.01Al–0.1Ga solder during aging treatment, Journal of Alloys and Compounds, 469 (2009) 350-356.
[111] H. Y. Lee, A. Sharma, S. H. Kee, Y. W. Lee, J. T. Moon, J. P. Jung, Effect of aluminium additions on wettability and intermetallic compound (IMC) growth of lead free Sn (2 wt.% Ag, 5 wt.% Bi) soldered joints, Electronic Materials Letters, 10 (2014) 997-1004.
[112] M. Kitajima, T. Shono, Development of Sn-Zn-Al lead-free solder alloys, Fujitsu Scientific & Technical Journal, 41 (2005) 225-235.
[113] K.-L. Lin, L.-H. Wen, T.-P. Liu, The microstructures of the Sn-Zn-Al solder alloys, Journal of Electronic Materials, 27 (1998) 97-105.
[114] K. Maslinda, A. Anasyida, M. Nurulakmal, Effect of Al addition to bulk microstructure, IMC formation, wetting and mechanical properties of low-Ag SAC solder, Journal of Materials Science: Materials in Electronics, 27 (2016) 489-502.
[115] C. M. L. Wu, D. Q. Yu, C. M. T. Law, L. Wang, Properties of lead-free solder alloys with rare earth element additions, Materials Science and Engineering: R: Reports, 44 (2004) 1-44.
[116] C. M. L. Wu, D. Q. Yu, C. M. T. Law, L. Wang, The properties of Sn-9Zn lead-free solder alloys doped with trace rare earth elements, Journal of Electronic Materials, 31 (2002) 921-927.
[117] L. Zhang, S.-B. Xue, L.-L. Gao, G. Zeng, Z. Sheng, Y. Chen, S.-L. Yu, Effects of rare earths on properties and microstructures of lead-free solder alloys, Journal of Materials Science: Materials in Electronics, 20 (2009) 685-694.
[118] C.M.L.Wu, C. M. T. Law, D.Q.Yu, L.Wang, The wettability and microstructure of Sn-Zn-RE alloys, Journal of Electronic Materials, 32 (2003) 63-69.
[119] J. Zhou, Y.-S. Sun, F. Xue, Effect of Nd and La on surface tension and wettability of Sn-8Zn-3Bi solders, Transactions of Nonferrous Metals Society of China, 15 (2005) 1161-1165.
[120] L. Gao, S. Xue, L. Zhang, Z. Xiao, W. Dai, F. Ji, H. Ye, G. Zeng, Effect of praseodymium on the microstructure and properties of Sn3.8Ag0.7Cu solder, Journal of Materials Science: Materials in Electronics, 21 (2009) 910-916.
[121] Z. Xiao, S. Xue, Y. Hu, H. Ye, L. Gao, H. Wang, Properties and microstructure of Sn-9Zn lead-free solder alloy bearing Pr, Journal of Materials Science: Materials in Electronics, 22 (2010) 659-665.
[122] L. Zhang, J.-G. Han, Y.-H. Guo, C.-W. He, Microstructures and properties of SnZn lead-free solder joints bearing La for electronic packaging, IEEE Transactions on Electron Devices, 59 (2012) 3269-3272.
[123] G. Zeng, S. Xue, L. Zhang, L. Gao, Z. Lai, J. Luo, Properties and microstructure of Sn–0.7 Cu–0.05 Ni solder bearing rare earth element Pr, Journal of Materials Science: Materials in Electronics, 22 (2011) 1101-1108.
[124] P. Xue, S. Xue, Y. Shen, Z. Xiao, H. Zhu, W. Long, X. Yu, Effect of Pr on properties and Sn whisker growth of Sn-9Zn-xPr solder, Soldering & Surface Mount Technology, 24 (2012) 280-286.
[125] P. Vianco, J. Rejent, Properties of ternary Sn-Ag-Bi solder alloys: Part II—Wettability and mechanical properties analyses, Journal of Electronic Materials, 28 (1999) 1138-1143.
[126] W. Y. Wu, X. M. Qiu, S. Q. Yan, D. Q. Sun, M. G. Li, Influence of Bi, Ag on microstrucutre and properties of Sn-9Zn lead-free solder (Chinese), Transactions of Nonferrous Metals Society of China, 16 (2006) 158-163.
[127] W. Chen, S. Xue, H. Wang, Wetting properties and interfacial microstructures of Sn–Zn–xGa solders on Cu substrate, Materials & Design, 31 (2010) 2196-2200.
[128] H. Wang, S. B. Xue, W. X. Chen, X. P. Ma, Effects of Ga and Al additions on corrosion resistance and high-temperature oxidation resistance of Sn-9Zn lead-free solder (Chinese), Rare Metal Materials and Engineering, 38 (2009) 2187-2190.
[129] N. S. Liu, The investigations of various properties on Sn-8.55Zn-0.5Ag-0.1Al-xGa solder with different Ga content, National Cheng Kung University, PHD Thesis (Chinese), (2007).
[130] T.-C. Chang, J.-W. Wang, M.-C. Wang, M.-H. Hon, Solderability of Sn–9Zn–0.5 Ag–1In lead-free solder on Cu substrate: Part 1. Thermal properties, microstructure, corrosion and oxidation resistance, Journal of Alloys and Compounds, 422 (2006) 239-243.
[131] J. Zhou, Y. S. Sun, F. Xue, Influence of Indium on wetting behaviors of Sn-8Zn-3Bi lead-free solder (Chinese), Rare Metal Materials and Engineering, 35 (2006) 613-616.
[132] S.-P. Yu, C.-L. Liao, M.-H. Hon, M.-C. Wang, The effects of flux on the wetting characteristics of near-eutectic Sn-Zn-In solder on Cu substrate, Journal of Materials Science, 35 (2000) 4217-4224.
[133] S. Zhang, Y. Zhang, H. Wang, Effect of oxide thickness of solder powders on the coalescence of SnAgCu lead-free solder pastes, Journal of Alloys and Compounds, 487 (2009) 682-686.
[134] H. Schoeller, J. Kim, S. Park, J. Cho, Thermodynamics and Kinetics of Oxidation of Pure Indium Solders, in: MRS Proceedings, Cambridge Univ Press, (2006), 0968-V0903-0907.
[135] L. Zhang, S.-B. Xue, L.-L. Gao, Z. Sheng, H. Ye, Z.-X. Xiao, G. Zeng, Y. Chen, S.-L. Yu, Development of Sn–Zn lead-free solders bearing alloying elements, Journal of Materials Science: Materials in Electronics, 21 (2010) 1-15.
[136] H. Wang, S. Xue, W. Chen, Effects of Al addition on corrosion resistance and high-temperature oxidation resistance of Sn-9Zn lead-free solder, Electric Welding Machines, 38 (2008) 61-64.
[137] C. Wang, J. Zhou, Y. Sun, L. Fang, Investigation on oxidation resistance of Sn-8Zn-3Bi lead-free solder alloys, J. Southeast Univ.(Nat. Sci. Ed.), 38 (2008) 693-697.
[138] X. Wang, Q. Zhu, B. Liu, N. Liu, F. Wang, Effect of doping Al on the liquid oxidation of Sn–Bi–Zn solder, Journal of Materials Science: Materials in Electronics, 25 (2014) 2297-2304.
[139] J. Zhou, D. Huang, Y.-L. Fang, F. Xue, Investigation on properties of Sn–8Zn–3Bi lead-free solder by Nd addition, Journal of Alloys and Compounds, 480 (2009) 903-907.
[140] W. Qu, S. Zhou, H. Zhuang, Effect of Ti content and Y additions on oxidation behavior of SnAgTi solder and its application on dissimilar metals soldering, Materials & Design, 88 (2015) 737-742.
[141] H. Wang, S. Xue, W. Chen, Effects of Al, Ga, and Ag on the surface properties and wetting reactions of Sn-9Zn-X solders, China Welding, 18 (2009) 57-61.
[142] W. Hui, X. Song Bai, C. Wen Xue, M. Xiu Ping, Effects of Ga and Al additions on corrosion resistance and high-temperature oxidation resistance of Sn-9Zn lead-free solder (Chinese), Rare Metal Materials and Engineering, 38 (2009) 2187-2190.
[143] N.-S. Liu, K.-L. Lin, Effect of Ga on the oxidation properties of Sn–8.5 Zn–0.5 Ag–0.1 Al–xGa solders, Oxidation of Metals, 78 (2012) 285-294.
[144] L. Fang, J. Zhou, F. Xue, Y. Sun, High-temperature oxidation behavior of Sn-8Zn-3Bi-P and its effect on properties, Transactions of the China Welding Institution, 29 (2008) 89-96.
[145] N. Huang, A. Hu, M. Li, D. Mao, Influence of Cr alloying on the oxidation resistance of Sn–8Zn–3Bi solders, Journal of Materials Science: Materials in Electronics, 24 (2013) 2812-2817.
[146] W. D. Callister, D. G. Rethwisch, Fundamentals of materials science and engineering: an integrated approach, John Wiley & Sons, (2012), 197-223.
[147] J. Pan, J. Tong, M. Tian, Fundamentals of Materials Science(Chinese), Beijing: Tsinghua University Press, (1998), 389.
[148] L. Zhang, J. G. Han, Y. H. Guo, C. W. He, J. Zhang, Microstructures and properties of SnAgCu solders bearing nano-particles Al, Transactions of the China Welding Institution, 34 (2013) 65-68.
[149] S.-C. Cheng, K.-L. Lin, Microstructure and mechanical properties of Sn-8.55 Zn-1Ag-XAl solder alloys, Materials Transactions, 46 (2005) 42-47.
[150] C.-W. Huang, K.-L. Lin, Microstructures and mechanical properties of Sn–8.55 Zn–0.45 Al–XAg solders, Journal of Materials Research, 18 (2003) 1528-1534.
[151] S. K. Das, A. Sharif, Y. C. Chan, N. B. Wong, W. Yung, Influence of small amount of Al and Cu on the microstructure, microhardness and tensile properties of Sn–9Zn binary eutectic solder alloy, Journal of Alloys and Compounds, 481 (2009) 167-172.
[152] L. Yang, Y. Zhang, J. Dai, Y. Jing, J. Ge, N. Zhang, Microstructure, interfacial IMC and mechanical properties of Sn–0.7 Cu–xAl (x= 0–0.075) lead-free solder alloy, Materials & Design, 67 (2015) 209-216.
[153] A. Sebaoun, D. Vincent, D. Treheux, Al–Zn–Sn phase diagram–isothermal diffusion in ternary system, Materials Science and Technology, 3 (1987) 241-248.
[154] B. Smetana, S. Zlá, A. Kroupa, M. Žaludová, J. Drápala, R. Burkovič, D. Petlák, Phase transition temperatures of Sn–Zn–Al system and their comparison with calculated phase diagrams, Journal of Thermal Analysis and Calorimetry, 110 (2012) 369-378.
[155] F. Xing, Y. Lu, C. Luo, Y. Ruan, X. Qiu, Coupling modification of microstructure for improving the mechanical properties of Zn-Sn-Cu-Bi high-temperature solder, Materials Letters, 181 (2016) 42-46.
[156] Y. Han, S. Xue, J. Yang, W. Long, Q. Zhang, Effects of trace amount praseodymium and neodymium on microstructure and mechanical properties of Sn–0.3 Ag–0.7 Cu–0.5 Ga solder, Journal of Materials Science: Materials in Electronics, 27 (2016) 351-358.
[157] H. Ye, S. Xue, M. Pecht, Evaluation of the microstructure and whisker growth in Sn–Zn–Ga solder with Pr content, Journal of Materials Research, 27 (2012) 1887-1894.
[158] H. Ye, S. Xue, J. Luo, Y. Li, Properties and interfacial microstructure of Sn–Zn–Ga solder joint with rare earth Pr addition, Materials & Design, 46 (2013) 816-823.
[159] G. Y. Shang, B. Lang, D. Q. Sun, W. Y. Wu, Z. W. Huang, Study of Sn - 8Zn lead - free solder wettability (Chinese), Electronics Process Technology, 27 (2006) 197-200.
[160] H. Z. Huang, Q. S. Huang, S. Peng, L. Zhou, Effects of Ag addition on the properties of Sn-9Zn Pb- free solder (Chinese), Special-cast and Non-ferrous Alloys, 26 (2006) 179-181.
[161] T.-C. Chang, S.-M. Chou, M.-H. Hon, M.-C. Wang, Microstructure and adhesion strength of Sn–9Zn–xAg lead-free solders wetted on Cu substrate, Materials Science and Engineering: A, 429 (2006) 36-42.
[162] J.-M. Song, G. Lan, T.-S. Lui, L.-H. Chen, Microstructure and tensile properties of Sn–9Zn–xAg lead-free solder alloys, Scripta Materialia, 48 (2003) 1047-1051.
[163] K.-I. Chen, K.-L. Lin, The microstructures and mechanical properties of the Sn-Zn-Ag-Al-Ga solder alloys—The effect of Ga, Journal of Electronic Materials, 32 (2003) 1111-1116.
[164] Y. Y. Yuan, Y. Sun, Research of Sn-Zn-In lead-free based solders (Chinese), Electronic Components and Materials 26 (2007) 39-41.
[165] M. McCormack, G. Kammlott, H. Chen, S. Jin, Significantly improved mechanical properties in Pb‐free, Sn‐Zn‐In solder alloy by Ag doping, Applied Physics Letters, 65 (1994) 1100-1102.
[166] P.-G. De Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves, Springer Science & Business Media, (2013).
[167] T. B. Massalski, H. Okamoto, P. Subramanian, L. Kacprzak, W. W. Scott, Binary Alloy Phase Diagrams, American Society for Metals Metals Park, OH, (1986).
[168] T. Gancarz, J. Pstruś, P. Fima, S. Mosińska, Effect of Ag addition to Zn–12Al alloy on kinetics of growth of intermediate phases on Cu substrate, Journal of Alloys and Compounds, 582 (2014) 313-322.
[169] H. Wang, S. B. Xue, W. X. Chen, X. P. Ma, Effects of Ga and Al additions on corrosion resistance and high-temperature oxidation resistance of Sn-9Zn lead-free solder (Chinese), Rare Metal Materials and Engineering, 38 (2009) 2187-2191.
[170] C. Y. Liu, H. K. Kim, K. N. Tu, Dewetting of molten Sn on Au Cu Cr thin-film metallization, Applied Physics Letters, 69 (1996) 4014-4018.
[171] F. G. Yost, F. M. Hosking, D. R. Frear, The Mechanics of Solder Alloy Wetting and Spreading, Springer Science & Business Media, (1993), 136-137,144-149.
[172] T. Laurila, V. Vuorinen, J. K. Kivilahti, Interfacial reactions between lead-free solders and common base materials, Materials Science and Engineering: R: Reports, 49 (2005) 1-60.
[173] M. Schaefer, R. A. Fournelle, a. J. Liang, Theory for intermetallic phase growth between cu and liquid Sn-Pb solder based on grain boundary diffusion control, Journal of Electronic Materials, 27 (1998) 1167-1176.
[174] R. A. Gagliano, G. Ghosh, a. M. E. Fine, Nucleation kinetics of Cu6Sn5 by reaction of molten tin with a copper substrate, Journal of Electronic Materials, 31 (2002) 1195-1202.
[175] Q. Zhai, S. Guan, Q. Shang, Alloy Thermo-Mechanism: Theory and Application (Chinese), Metallurgy Industry Press, BeiJing, (1999).
[176] D. Q. Yu, J. Zhao, L. Wang, Improvement on the microstructure stability, mechanical and wetting properties of Sn–Ag–Cu lead-free solder with the addition of rare earth elements, Journal of Alloys and Compounds, 376 (2004) 170-175.
[177] J. Shen, Y. C. Chan, Effect of metal/ceramic nanoparticle-doped fluxes on the wettability between Sn–Ag–Cu solder and a Cu layer, Journal of Alloys and Compounds, 477 (2009) 909-914.
[178] M. Kitajima, T. Shono, Development of Sn-Zn-Al lead-free solder alloys, Fujitsu Scientific & Technical Journal, 41 (2005) 225-235.
[179] L. Zhang, J.-G. Han, Y.-H. Guo, L. Sun, Creep behavior of SnAgCu solders containing nano-Al particles, Journal of Materials Science: Materials in Electronics, 26 3615-3620.
[180] J. Q. Cai, Mount Technology and Application of Sn-Zn-Al Solder (Chinese), Printed Circuit Information, 5 (2006) 61-67.
[181] B. Li, Y. Shi, Y. Lei, F. Guo, Z. Xia, B. Zong, Effect of rare earth element addition on the microstructure of Sn-Ag-Cu solder joint, Journal of Electronic Materials, 34 (2005) 217-224.
[182] Y. Wang, X.-C. Zhao, Y. Liu, Y. Wang, D.-M. Li, Microstructure, wetting property of Sn–Ag–Cu–Bi–xCe solder and IMC growth at solder/Cu interface during thermal cycling, Rare Metals, 12 (2015) 1-6.
[183] K.-L. Lin, T.-P. Liu, High-temperature oxidation of a Sn-Zn-Al solder, Oxidation of Metals, 50 (1998) 255-267.
[184] C. Wagner, Theoretical analysis of the diffusion processes determining the oxidation rate of alloys, Journal of the Electrochemical Society, 99 (1952) 369-380.
[185] C. D. Wagner, G. Muilenberg, Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer, (1979).
[186] M. Dudek, N. Chawla, Oxidation behavior of rare-earth-containing Pb-free solders, Journal of Electronic Materials, 38 (2009) 210-220.
[187] M. Paljević, Z. Ban, Oxidation of stoichiometric Zr3Al-based alloy, Journal of Nuclear Materials, 95 (1980) 253-258.
[188] M. Paljević, Selective oxidation of Zr2 Al3, Journal of Alloys and Compounds, 191 (1993) 27-29.
[189] F. Chen, Y. F. Du, R. C. Zeng, G. S. Gan, C. H. Du, Thermodynamics of oxidation on Pb-Free Solders at elevated temperature, in: Materials Science Forum, Trans Tech Publ, (2009), 526-530.
[190] J.-M. Song, Y.-M. Cheng, C.-H. Tsai, Oxidation of liquid solders for die attachment, Corrosion Science, 52 (2010) 4011-4016.
[191] G. Samsonov, The Oxide Handbook IFI/Plenum Data Corporation, (1973), 83-89.
[192] N. Y. Chen, Bond-parametric function and its application, Science Press, 6 (1974) 580-584.
[193] E. Aragon, A. Sebaoun, Al-Zn-Sn phase diagram X-ray diffraction study at various temperatures, Journal of Thermal Analysis and Calorimetry, 52 (1998) 523-535.
[194] G. Zeng, S. D. McDonald, Q. Gu, Y. Terada, K. Uesugi, H. Yasuda, K. Nogita, The influence of Ni and Zn additions on microstructure and phase transformations in Sn–0.7 Cu/Cu solder joints, Acta Materialia, 83 (2015) 357-371.
[195] M. F. Gigliotti, G. A. Colligan, G. L. Powell, Halo formation in eutectic alloy systems, Metallurgical Transactions, 1 (1970) 891-897.
[196] M. Nave, A. Dahle, D. StJohn, Halo formation in directional solidification, Acta Materialia, 50 (2002) 2837-2849.
[197] Z. Yaohe, H. Zhuangqi, J. Wanqi, Solidification Technology (chinese), Beijing: M echanical Industry Press, l, (1998), 42.
[198] G. A. Chadwick, Metallography of phase transformations, (1972).
[199] E. Hornbogen, E. Starke, Overview no. 102 Theory assisted design of high strength low alloy aluminum, Acta metallurgica et materialia, 41 (1993) 1-16.
[200] Y. Chen, N. Gao, G. Sha, S. P. Ringer, M. J. Starink, Microstructural evolution, strengthening and thermal stability of an ultrafine-grained Al–Cu–Mg alloy, Acta Materialia, 109 (2016) 202-212.
[201] C.-M. Chuang, T.-S. Lui, L.-H. Chen, Effect of aluminum addition on tensile properties of naturally aged Sn-9Zn eutectic solder, Journal of Materials Science, 37 (2002) 191-195.
[202] M. A. El-Khair, A. Daoud, A. Ismail, Effect of different Al contents on the microstructure, tensile and wear properties of Zn-based alloy, Materials Letters, 58 (2004) 1754-1760.
[203] J. Kang, C. N. Li, G. Yuan, G. D. Wang, Improvement of strength and toughness for hot rolled low-carbon bainitic steel via grain refinement and crystallographic texture, Materials Letters, 175 (2016) 157-160.
[204] E. B. Tochaee, H. M. Hosseini, S. S. Reihani, On the fracture toughness behavior of in-situ Al-Ti composites produced via mechanical alloying and hot extrusion, Journal of Alloys and Compounds, 681 (2016) 12-21.
[205] L. Wang, J. Shen, Y. Zhang, H. Fu, Microstructure, fracture toughness and compressive property of as-cast and directionally solidified NiAl-based eutectic composite, Materials Science and Engineering: A, 664 (2016) 188-194.