簡易檢索 / 詳目顯示

研究生: 李昕澄
Lee, Hsin-Cheng
論文名稱: Zn(Nb1-xTax)2O6陶瓷材料其微波介電性質與結構之探討
Microwave Dielectric Properties and Structure of Zn(Nb1-xTax)2O6 Ceramics
指導教授: 黃啟原
Huang, Chi-Yuen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 67
中文關鍵詞: 鈳鐵礦鈳鉭鐵礦有序程度ZnNb2O6
外文關鍵詞: ZnNb2O6, columbite, ixiolite, ordering degree
相關次數: 點閱:57下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • ZnNb2O6材料為鈳鐵礦結構 (columbite)。此材料之燒結溫度約在1000-1200°C,且具有良好的微波介電性質。
    在近幾十年來有許多文獻探討鈳鐵礦結構 M+Nb2O6,但大多數研究均集中探討以不同元素取代 M+,所造成性質之改變。而過去研究指出,添加少量 Ta5+於 ZnNb2O6 中,能夠完全固溶於結構中並形成 Zn(Nb1-xTax)2O6 成份系統。
    故本研究以 x=0-0.1 之Ta5+ 少量取代 Nb5+,形成純相之固溶體 Zn(Nb1-xTax)2O6,探討其晶體結構、微結構與微波介電性質的關係。
    在本實驗燒結條件為升溫速率 5°C / min 升到 1150 °C,並持溫 2 小時情況下,不同成份點之微結構、粒徑大小和密度皆無明顯的改變 (相對密度變化在 96.1% 至 96.7% 之間),但其微波介電性質 Q×f 有大幅度的改變。
    而介電常數 (r) 由 x=0 時 22.9 提升至 23.1 (x=0.05),雖有增加,但變化之幅度不明顯。但當x=0時 Q×f 值為 80,000,而在 x=0.05 時提升至 130,000 (at 8.81 GHz),而添加 Ta5+ 至 x=0.1 時,Q×f 值下降至 88,000。
    在晶體結構部分:鈳鉭鐵礦 (ixiolite)具有鈳鐵礦類似之結構,且可視為鈳鐵礦之無序結構,而在前人文獻指出,當鈳鉭鐵礦轉變為鈳鐵礦時會出現 (040) 繞射面。從長時間 X 光繞射光譜計算可知,在 x=0.05 時,有序程度 (I040/ I040+ I031) 較 x=0 時有些微上升;從 9.84 升至13.41,故推測 Q×f 值上升與結構之有序程度有關。

    ZnNb2O6 with a columbite crystal structure have good microwave dielectric properties and sintered temperature about 1000-1200°C. The binary niobate compounds with general formula M+Nb2O6 was interested in last decade, and most of articles focus how the M+ effects dielectric properties of M+Nb2O6. In the past study, it is substituting small amount Nb5+ with Ta5+ of the ZnNb2O6 ceramics can forming solid solution Zn(Nb1-xTax)2O6.
    At this study sintering condition (sintering temperature 1150°C for 2 h), by increasing x, not only the microstructure, grain size but relative density (change from 96.1% to 96.7%) have not change obviously. But the Q×f (at 8.81 GHz) be tremendously boosted from 80,000 GHz at x= 0 to a maximum 130,000 GHz at x=0.05. On the other hand, Q×f decrease to the 88,000 GHz at x=0.1.
    Structurally, ixiolite can be regarded as a disorder form of columbite, and in the past study, when the ixiolite structure changes to columbite, the peak (040) will appear. At this study, the ordering degree (I040/ I040+ I031) is increase from 9.84 at x=0 to 13.41 x=0.05, so we conjectures the reason of Q×f increase is the ordering degree increase.

    摘要………………………………………………………………I Abstract......................................II 致謝………………………………………………………………III 總目錄………………………………………………………………V 表目錄……………………………………………………………VII 圖目錄 …………………………………………………………VIII 第一章 緒論 ........................................ 1 1-1 前言 .......................................... 1 1-2 目的 .......................................... 2 第二章 前人研究與理論基礎 ............................ 3 2-1 ZnNb2O6之晶體結構 .............................. 3 2-2 ZnNb2O6之微波介電性質 .......................... 3 2-3 ZnNb2O6以Ta5+取代Nb5+之研究 .................... 7 2-4 燒結理論 ...................................... 12 2-5 介電共振器原理 ................................. 13 第三章 實驗方法及步驟 ............................... 15 3-1 實驗流程圖 ..................................... 15 3-2 起始原料 ....................................... 15 3-3 粉末合成 ....................................... 15 3-4 材料分析 ...................................... 15 3-4-1 熱差/熱重分析 ................................ 18 3-4-2 相鑑定分析 .................................. 18 3-4-3 燒結收縮分析 ................................. 18 3-4-4 燒結體密度量測 ............................... 20 3-4-5 燒結體微結構觀察 .............................. 20 3-4-6 晶格常數計算 ................................. 21 3-4-7 拉曼光譜儀 ................................... 21 3-4-8 X光吸收光譜 .................................. 21 3-4-9 Rietveld method 精算 ......................... 24 3-5 材料介電性質量測 ................................ 27 3-5-1 介電性質量測之準備 ............................. 27 3-5-2 微波介電性質量測 ............................... 27 第四章 結果與討論 .................................... 29 4-1 起始粉末之分析 ................................... 29 4-2 粉末合成 ......................................... 29 4-2-1 粉末合成之熱差/熱重分析 .......................... 32 4-2-2粉末合成之相鑑定分析 ............................. 32 4-2-3粉末合成之微結構 ................................. 32 4-3 製程參數之影響 ................................... 36 4-4 材料分析 ........................................ 39 4-4-1 燒結溫度測試 .................................. 39 4-4-2 微結構觀察 .................................... 41 4-4-3 晶格常數與理論密度計算 .......................... 47 4-4-4 密度量測 ...................................... 47 4-4-5 晶體結構探討 ................................... 51 4-4-5-1 拉曼光譜分析 ................................. 51 4-4-5-2 X 光吸收光譜分析 ............................. 51 4-4-5-3 有序程度之探討 ............................... 55 4-4-5-4晶體結構精算 (Rietveld method) ................ 55 4-5 微波介電性質分析 .................................. 58 參考文獻 ............................................. 61 附錄 A ................................................64

    1. “Low Loss Dielectric Materials LTCC Applications. A Review,” Int. Mater.,[53] 57-90 (2008).
    2. S. Kawashima, M. Nishida, I. Ueda, and H. Ouchi, “Ba(Zn1/3Ta2/3)O3 Ceramics with Low Dielectric Loss atMicrowave-Frequencies,”J. Am. Ceram. Soc.,66 [6] 241 (1983).
    3. Matsumoto, T. Hiuga, K. Takada, and H. Ichimura, “Ba(M1/3Ta2/3)O3 Ceramics with Ultra-Low Loss at Microwave-Frequencies,” IEEE Trans. Ultrason., Ferroelectr. Frequency Control, 33 [6] 802 (1986).
    4. R. D. Shannon,”Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., 32,751 (1976)
    5. K. P. Surendran, P. V. Bijumon, P. Mohanan, and M. T. Sebastian,”(1-x)MgAl2O4- xTiO2 system for microwave and millimeter wave applications, ”Phys., 98044101 (2005)
    6. C. L. Huang, and J. Y. Chen, “High-Q Microwave Dielectrics in the (Mg1-xCox)2TiO4 Ceramics,” J. Am. Ceram. Soc., 92 [2] 379–383 (2009).
    7. S. Astorg, S. Marinel, O. Perez, A. Veres, “Investigation of some niobate-based dielectrics in view of base metal co-sintering,” J. Euro. Ceram. Soc., [27] 4445–4451 (2007).
    8. R. C. Pullar “The Synthesis, Properties, and Applications of Columbite Niobates (M+Nb2O6): A Critical Review,” J. Am. Ceram. Soc., 92 [3] 563–577 (2009).
    9. H. J. Lee, K. S. Hong and S. J. Kim, “Dielectric Properties of MNb2O6 Compounds
    (where M = Ca, Mn, Co, Ni, or Zn),” Mater. Res. Bull., 32 [7] 847-855 (1997).
    10. C. L. Huang and J. Y. Chen,” Reduced Dielectric Loss of Modified ZnNb2O6 Ceramics by Substituting Nb5+ with Ta5+,” J. Am. Ceram. Soc., 92 [8] 1845-1848 (2009).
    11. T. Hahn, “International Tables for Crystallography Volume A Space-Group Symmetry,” 2nd Rd. (1987)
    12. M. T. Sebastian and H. Jantunen. “Low Loss Dielectric Materials LTCC Applications. A Review,” Int. Mater.,[53] 57-90 (2008).
    13. H. J. Lee and K. S. Hong, “Crystal structure and microwave dielectric properties of M+(NbxTa1-x)2O6 solid solution (M+ = Mg or Zn),” J. Mater. Res. 12 [6] (1997).

    14. Y. C. Zhang, Z. X. Yue, X. Qi, B. Li, Z. L. Gui and L. T. Li,” Microwave dielectric properties of Zn(Nb1-xTax)2O6 ceramics,” Mater. Lett., 58 1392– 1395 (2004).
    15. James S. Reed, ”principles of ceramics processing,” second edition.
    16. G.. C. Kuczynski, ”Sintering and Related Phenomena,” Gorden and Breach Science Publisher,(1965).
    17. W. J. Huppmann and G. Petzow, “The Elementary Mechanisms of Liquid Sintering, Sintering Processes,” Edited by G. C. Kuczynski, New York: Plenum Press, 189-202 (1979).
    18. D. K. Cheng, “Field and Wave Electromagnetic,” Addison Wesley, Mass., 407-412 (1989).
    19. D. Kajfez, “Computed Modal Field Distribution for Isolated Dielectric Resonators,” IEEE. Trans. MTT, MTT - 32, 1609-1616 (1984).
    20. A. C. Larson and R. B. Von Dreele, Los Alamos Laboratory Report LAUR 86-748, Los Alamos National Laboratory, Los Alamos, (1994).
    21. H. M. Rietveld, ”Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta. Crystal., [22] 151 (1967).
    22. 王俊傑,ZnNb2O6 介電陶瓷材料燒結與微波特性之研究,國立成功大學電機工程研究所碩士論文 (2003)。
    23. J. S. Reed, “Principles of Ceramic Processing, Wiley, New York (1988).
    24. A. Kan, H. Ogawaa, H. Ohsato,” Influence of microstructure on microwave dielectric properties of ZnTa2O6 ceramics with low dielectric loss,” J. Alloys Compd. 337 303–308 (2002).
    25. R. D. Shannon,” Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,” Acta Crystallogr, A32 751-767 (1976).
    26. E. Husson, Y. Repelin, N. Q. Dao, H. Brusset and E. Fardouet,” Etude par spectrophotométries d'absorption infrarouge et de diffusion Raman des niobates de structure columbite,” Spectrochim. Acta, Part A, 33 [11] 995-1001 (1977).
    27. C. T. Chia, Y. C. Chen, H. F. Cheng and I N. Lin,”Correlation of microwave dielectric properties and normal vibration modes of xBa (Mg1/3Ta2/3)O3– (1−x)
    Ba(Mg1/3Nb2/3)O3 ceramics: I. Raman spectroscopy ” J. Appl. Phys. [94] 3360-3365 (2003).
    28. S. M. Ji, S. H. Choi, J. S. Jang, E. S. Kim, and J. S. Lee,” Band Gap Tailored Zn(Nb1-xVx)2O6 Solid Solutions as Visible Light Photocatalysts,” J. Phys. Chem., 113, 17824–17830 (2009).
    29. D. W. Kim, D. Y. Kim, and K. S. Hong, ” Phase relations and microwave dielectric properties of ZnNb2O6–TiO2” J. Mater. Res. 15 [6] (2000).
    30. S. Butee, A. Kulkarni, O. Prakash, S. George, and M. Sebastian, “High Q Microwave Dielectric Ceramics in (Ni1-x Znx)Nb2O6 System.,” J. Am. Ceram. Soc., 92 [5] 1047–1053 (2009).
    31. M. Wenger,T. Armbruster, C. A. Geiger, ” Cation distribution in partially ordered columbite from the Kings Mountain,” Am. Mineral., 76 1897-1904 (1991).
    32. A. C. Larson and R. B. Von Dreele, General Structure Analysis System, Los Alamos National Laboratory, Los Alamos (1988).

    下載圖示 校內:2013-08-25公開
    校外:立即公開
    QR CODE