| 研究生: |
莊佳穎 Chuang, Jia-Ying |
|---|---|
| 論文名稱: |
影響情緒相關記憶獲取及再穩固化歷程的因子 The modulating factors in the acquisition and reconsolidation of emotion-related memories |
| 指導教授: |
游一龍
Yu, Lung 郭余民 Kuo, Yu-Min |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 學習記憶 、僵直反應 、長期增益現象 、杏仁核 、性別差異 、古柯鹼場地制約 、被動逃避學習 、蛋白質合成抑制劑 、阿滋海默症 、血紅素 、β糊蛋白 、海馬迴 |
| 外文關鍵詞: | Learning and memory, freezing behavior, Long term potentiation, Amygdala, Sex difference, Cocaine-induced conditioned place preference, Passive avoidance, Protein synthesis inhibitor, Alzheimer’s disease, Hemoglobin, β-Amyloid, Hippocampus |
| 相關次數: | 點閱:182 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當環境事件刺激中樞神經系統後,學習歷程開始,並且中樞神經系統開始整合這些刺激訊號。這一段學習過程很快地會歷經一個假設性的穩固化過程並將此經驗儲存在中樞神經系統直到我們需要這段記憶的資訊而再次去提取。而記憶提取通常是為了添增新的資訊或是再強化這段記憶,很多實驗研究證明這過程會使這段記憶進入不穩定的狀態,隨後這不穩定狀態記憶會自發性地經歷一個假設性的再穩固階段,並再次使這記憶穩定地儲存在中樞神經系統中。本篇論文將探討獲取學習以及再穩固化這兩個階段。第一部分,我研究小鼠表現恐懼相關記憶上之性別差異是否在學習階段就不同,其相關機制又為何? 線索制約僵直反應、電生理記錄,以及蛋白質分析將用於探討這個議題。結果顯示母小鼠在線索制約僵直反應、杏仁核LTP表現、GluR1、GluR2,以及PSD-95蛋白表達量都高過公小鼠,而雄性激素可能主導了這些差異。第二部分,研究干擾一個記憶再穩固化歷程是否同時干擾其他沒被提取出來的記憶?在這章節,小鼠依序學習古柯鹼場地制約偏好學習記憶以及被動逃避學習記憶。提取被動逃避學習記憶(或場地制約偏好記憶)之後立刻在BLA施打蛋白質合成抑制劑(anisomycin)發現兩小時後被動逃避學習記憶(或場地制約偏好記憶)的再測試表現降低了。提取被動逃避學習記憶(或場地制約偏好記憶)之後立刻在CeA施打anisomycin發現兩小時後的被動逃避學習記憶(或場地制約偏好記憶)再測試表現雖沒被影響,但是在施打5天後的再測試被動逃避學習記憶(或場地制約偏好記憶)之表現降低了。如沒提取被動逃避(或場地制約偏好)的學習記憶或提取其他學習記憶,則無論在BLA或CeA施打蛋白質合成抑制劑都不影響被動逃避學習記憶(或場地制約偏好記憶)的表現。這樣的結果暗示著杏仁核涉及調控情緒相關記憶的再穩固化過程。而在情感相關的記憶再穩固化過程,BLA對於前期的記憶再穩固化重要,而CeA則在後期的記憶再穩固化扮演重要角色。在附錄部份,我研究記憶穩固化階段異常的記憶相關疾病,阿滋海默症。我假設β糊蛋白很可能跟血球上的蛋白質進行交互作用進而引發血管相關病症最後導致AD病症的加劇。我利用阿滋海默症基因轉殖小鼠來探討血紅素以及β糊蛋白在腦中的關係。結果顯示血紅素在阿滋海默症基因轉殖小鼠會如β糊蛋白隨著年紀變大而表達量上昇,β糊蛋白與血紅素β次單位在表達位置上有高度相關性。在海馬迴引發出血後,血紅素訊號會徵集β糊蛋白聚集。這結果暗示血紅素會幫助β糊蛋白堆積。
When environmental events or sensory stimuli impinge upon our central nervous system, we begin to learn (acquisition process) and central nervous system begins to integrate all the incoming information. Acquisition processes soon is placed by consolidation in an attempt to consolidate such information into the central nervous system until this acquired memory is stored and later retrieved under request. Retrieving an acquired memory turns this stable memory into a labile state for incorporation of new incoming information or strengthening this memory. Labile memory then, theoretically, undergoes a spontaneous reconsolidation process and being again stably stored in the central nervous system. In present studies, two of these processes, acquisition and reconsolidation, were discussed. In part 1, whether sex difference in performance of emotional related memories is different in acquisition process was investigated. And what are promising underlying mechanisms? Fear conditioning freezing behavior test, electrophysiology, and protein assay were used in this study. Female mice show higher magnitude in cue induced freezing, amygdaloid LTP performance, GluR1, GluR2, and PSD-95 protein level compare with male mice. Gonadal hormone in male mice may be responsible for sex difference of fear condition behavioral performance. In part 2, I investigated whether disturbance of one retrieved memory by inhibition of de novo protein synthesis during reconsolidation process is also affecting other non retrieved memory. Mice were trained to sequentially acquire both cocaine-induced conditioned place preference (CPP) and step-through passive avoidance (PA) memories. Immediately following PA/CPP retrieval, intra-BLA anisomycin infusion was found to decrease subsequent PA/CPP performance in retests. Immediately following PA/CPP retrieval, intra-CeA anisomycin infusion did not acutely affect PA/CPP performance but decreased such a PA/CPP memory 5 days later. When PA/CPP retrieval procedure was omitted, intra-BLA or intra-CeA anisomycin infusion did not affect PA/CPP memory. Intra-BLA and intra-CeA anisomycin infusion alone did not affect subsequent PA/CPP memory. These results, taken together, imply that de novo protein synthesis in amygdala plays an important role in modulating reconsolidation of emotion-related memory. More importantly, de novo protein synthesis in the BLA is essential for early phase reconsolidation of retrieved emotion-related memories. Protein synthesis in the CeA is required for late phase reconsolidation of retrieved emotion-related memories. In appendix, I discussed Alzheimer’s disease, a memory related disease, which was thought abnormal in consolidation process. I hypothesize that interaction between hemoglobin and β-amyloid in mini-hemorrhagic damaged brain may facilitate Alzheimer's disease development and progression. Male double (AP/PS, Amyloid precursor protein/ Presenilin) transgenic mice was used in this study. Hemoglobin was up regulation in alzheimer’s disease mice and hemoglobin β is correlation with β-amyloid. And in in vivo study, intra-hippocampus induction of hemorrhage induce hemoglobin leakage and recruit β-amyloid protein deposition suggesting that hemorrhage may enhance β-amyloid deposition.
第一章節參考資料:
Altemus M. Sex differences in depression and anxiety disorders: Potential biological determinants. Horm Behav. 50:534–538, 2006.
Anagnostaras SG, Maren S, DeCola JP, Lane NI, Gale GD, Schlinger BA, Fanselow MS. Testicular hormones do not regulate sexually dimorphic Pavlovian fear conditioning or perforant-path long-term potentiation in adult male rats. Behav Brain Res. 92:1-9, 1998.
Astur RS, Tropp J, Sava S, Constable RT, Markus EJ. Sex differences and correlations in a virtual Morris water task, a virtual radial arm maze, and mental rotation. Behav Brain Res. 151:103-15, 2004.
Denti A, and Epstein A. Sex differences in the acquisition of two kinds of avoidance behavior in rats. Physiol Behav. 8:611-5, 1972.
Beatty WW, and Beatty PA. Hormonal determinants of sex differences in avoidance behavior and reactivity to electric shock in the rat. J Comp Physiol Psychol. 73:446-55, 1970.
Bliss TV and Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 361:31–39, 1993.
Burns, L.H., Everitt, B.J. and Robbins, T.W. Differential effects of excitotoxic lesions of the basolateral amygdala, ventral subiculum and medial prefrontal cortex on responding with conditioned reinforcement and locomotor activity potentiated by intra-accumbens infusions of d-amphetamine. Behav. Brain Res. 55:167-183, 1993.
Breslau N. Gender differences in trauma and posttraumatic stress disorder. J Gend Specif Med. 5:34–40, 2002.
Cooke SF and Bliss TV. Plasticity in the human central nervous system. Brain 2006, 7:1659–73.
Dalla C, Edgecomb C, Whetstone AS, Shors TJ. Females do not express learned helplessness like males do. Neuropsychopharmacology. 33:1559–1569, 2008.
Fanselow MS. Conditioned and unconditional components of post-shock freezing. Pavlov J Biol Sci. 15:177-82, 1980.
Gupta RR, Sen S, Diepenhorst LL, Rudick CN, Maren S.. Estrogen modulates sexually dimorphic contextual fear conditioning and hippocampal long-term potentiation (LTP) in rats. Brain Res. 888:356–365, 2001.
Heinsbroek RP, Van Haaren F, Van de Poll NE, Steenbergen HL. Sex differences in the behavioral consequences of inescapable footshocks depend on time since shock. Physiol Behav. 49:1257–1263, 1991.
Kendler KS, Karkowski LM, Prescott CA. Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry. 156:837–41, 1999.
Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, Rush AJ, Walters EE, Wang PS. The epidemiology of major depressive disorder: Results from the National Comorbidity Survey Replication (NCSR). JAMA. 289:3095–3105, 2003.
Kessler RC. Epidemiology of women and depression. J Affect Disord. 74:5-13, 2003.
Kramár EA, Chen LY, Brandon NJ, Rex CS, Liu F, Gall CM, Lynch G. Cytoskeletal changes underlie estrogen's acute effects on synaptic transmission and plasticity. J Neurosci. 29:12982-93, 2009.
Ludovic Calandreau, Aline Desmedt, Laurence Decorte, et al. A different recruitment of the lateral and basolateral amygdala promotes contextual or elemental conditioned association in pavlovian fear conditioning. Learn. Mem. 12:383-388, 2005.
Luine, V.N., Richards, S.T., Wu, V.Y. and Beck, K.D. Estradiol enhances learning and memory in a spatial memory task and effects levels of monoaminergic neurotransmitters. Horm. Behav. 34:149-162, 1998.
Maren, S. Sexually dimorphic perforant path long-term potentiation (LTP) in urethane-anesthetized rats. Neurosci. Lett. 196:177-180, 1995.
Maren S, De Oca B, Fanselow MS. Sex differences in hippocampal long-term potentiation (LTP) and Pavlovian fear conditioning in rats: positive correlation between LTP, contextual learning. Brain Res, 661:25–34, 1994.
Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron, 34:13–25, 2002.
Rissanen A, Puoliväli J, van Groen T, Riekkinen P Jr. In mice tonic estrogen replacement therapy improves non-spatial and spatial memory in a water maze task. Neuroreport. 10:1369-1372, 1999.
Romanski LM, Clugnet MC, Bordi F, LeDoux JE. Somatosensory and auditory convergence in the lateral nucleus of the amygdala. Behav Neurosci. 107:444-450, 1993.
Shors TJ, Mathew J, Sisti HM, Edgecomb C, Beckoff S, Dalla C. Neurogenesis and helplessness are mediated by controllability in males but not in females. Biol Psychiatry. 62:487–495, 2007.
Steenbergen HL, Heinsbroek RP, Van Hest A, Van de Poll NE. Sex-dependent effects of inescapable shock administration on shuttlebox- escape performance and elevated plus-maze behavior. Physiol Behav. 48:571–576, 1990.
Steiner M, Dunn E, Born L. Hormones and mood: From menarche to menopause and beyond. J Affect Disord. 74:67–83, 2003.
Thompson, B.L., Erickson, K., Schulkin, J. and Rosen, J.B. Corticosterone facilitates retention of contextually conditioned fear and increases CRH mRNA expression in the amygdala. Behav Brain Res. 149:209-215, 2004.
Wood GE, Shors TJ. Stress facilitates classical conditioning in males, but impairs classical conditioning in females through activational effects of ovarian hormones. Proc Natl Acad Sci. 95:4066-4071, 1998.
Yeh SH, Mao SC, Lin HC, Gean PW. Synaptic expression of glutamate receptor after encoding of fear memory in the rat amygdala. Mol Pharmacol. 69:299-308, 2006.
第二章節參考資料:
Abel, T. and Lattal, K.M. Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr. Opin. Neurobiol. 11: 180-187, 2001.
Alberini, C.M. Mechanisms of memory stabilization: are consolidation and reconsolidation similar or distinct processes? Trends Neurosci. 28: 51–56, 2005.
Brewin, C.R. The nature and significance of memory disturbance in posttraumatic stress disorder. Ann. Rev. Clin. Psychol. 7: 203-227, 2011.
Burns, L.H., Everitt, B.J. and Robbins, T.W. Differential effects of excitotoxic lesions of the basolateral amygdala, ventral subiculum and medial prefrontal cortex on responding with conditioned reinforcement and locomotor activity potentiated by intra-accumbens infusions of d-amphetamine. Behav. Brain Res. 55: 167-183, 1993.
Davis, S., Renaudineau, S., Poirier, R., Poucet, B., Save, E. and Laroche, S. The formation and stability of recognition memory: what happens upon recall? Front. Behav. Neurosci. 4: 177, 2010.
Debiec, J., Diaz-Mataix, L., Bush, D.E., Doyere, V. and LeDoux, J.E. The amygdala encodes specific sensory features of an aversive reinforcer. Nat. Neurosci. 13: 536-537, 2010.
Debiec, J., Bush, D.E. and LeDoux, J.E. Noradrenergic enhancement of reconsolidation in the amygdala impairs extinction of conditioned fear in rats--a possible mechanism for the persistence of traumatic memories in PTSD. Depress. Anxiety 28: 186-193, 2011.
Dudai, Y. Molecular bases of long-term memories: a question of persistence. Curr. Opin. Neurobiol. 12: 211-216, 2002.
Dudai, Y. and Eisenberg, M. Rites of passage of the engram: reconsolidation and the lingering consolidation hypothesis. Neuron 44: 93-100, 2004.
Duvarci, S., Mamou, C.B. and Nader, K. Extinction is not a sufficient condition to prevent fear memories from undergoing reconsolidation in the basolateral amygdala. Eur. J. Neurosci. 24:249-260, 2006.
Duvarci, S., Nader, K. and LeDoux, J.E. De novo mRNA synthesis is required for both consolidation and reconsolidation of fear memories in the amygdala. Learn. Mem. 15: 747-755, 2008.
Fan, H-Y., Cherng, C.G., Yang, F-Y., Cheng, L-Y., Tsai, C-Y., Lin, L-C. and Yu, L. Systemic treatment with protein synthesis inhibitors attenuates the expression of cocaine memory. Behav. Brain Res. 208: 522-527, 2010.
Fuchs, R.A., Bell, G.H., Ramirez, D.R., Eaddy, J.L. and Su, Z.I. Basolateral amygdala involvement in memory reconsolidation processes that facilitate drug context-induced cocaine seeking. Eur. J. Neurosci. 30: 889-900, 2009.
García-DeLaTorre, P., Rodriguez-Ortiz, C.J., Arreguin-Martinez, J.L., Cruz-Castañeda, P. and Bermúdez-Rattoni, F. Simultaneous but not independent anisomycin infusions in insular cortex and amygdala hinder stabilization of taste memory when updated. Learn. Mem. 16: 514-519, 2009.
Hupbach, A., Gomez, R., Hardt, O. and Nadel, L. Reconsolidation of episodic memories: a subtle reminder triggers integration of new information. Learn. Mem. 14: 47–53, 2007.
Jin, X.C., Lu, Y.F., Yang, X.F., Ma, L. and Li, B.M. Glucocorticoid receptors in the basolateral nucleus of amygdala are required for postreactivation reconsolidation of auditory fear memory. Eur. J. Neurosci. 25: 3702-3712, 2007.
Kang, H., Sun, L.D., Atkins, C.M., Soderling, T.R., Wilson, M.A. and Tonegawa, S. An important role of neural activity-dependent CaMKIV signaling in the consolidation of long-term memory. Cell 106: 771-783, 2001.
Kuo, Y.M., Liang, K.C., Chen, H.H., Cherng, C.G., Lee, H.T., Lin, Y., Huang, A.M., Liao, R.M. and Yu, L. Cocaine-but not methamphetamine-associated memory requires de novo protein synthesis. Neurobiol. Learn. Mem. 87: 93-100, 2007.
Lai, Y-T., Fan, H-Y., Cherng, C.G., Chiang, C-Y., Kao, G-S. and Yu, L. Activation of amygdaloid PKC pathway is necessary for conditioned cues-provoked cocaine memory performance. Neurobiol. Learn. Mem. 90: 164-170, 2008.
Lee, J.L., Milton, A.L. and Everitt, B.J. Cue-induced cocaine seeking and relapse are reduced by disruption of drug memory reconsolidation. J. Neurosci. 26: 5881-5887, 2006.
Li, F.Q., Xue, Y.X., Wang, J.S., Fang, Q., Li, Y.Q., Zhu, W.L., He, Y.Y., Liu, J.F., Xue, L.F., Shaham, Y. and Lu, L. Basolateral amygdala cdk5 activity mediates consolidation and reconsolidation of memories for cocaine cues. J. Neurosci. 30: 10351-10359, 2010.
Lin, K-Y., Cherng, C.G., Yang, F-Y., Lin, L-C., Lu, R-B. and Yu, L. Memantine abolishes the formation of cocaine-induced conditioned place preference possibly via its IL-6-modulating effect in medial prefrontal cortex. Behav. Brain. Res. 220: 126-131, 2011.
Mamiya, N., Fukushima, H., Suzuki, A., Matsuyama, Z., Homma, S., Frankland, P.W. and Kida, S. Brain region-specific gene expression activation required for reconsolidation and extinction of contextual fear memory. J. Neurosci. 29: 402-413, 2009.
McGaugh, J.L. Memory—a century of consolidation. Science 287: 248-251, 2000.
Milekic, M.H., Brown, S.D., Castellini, C. and Alberini, C.M. Persistent disruption of an established morphine conditioned place preference. J. Neurosci. 26: 3010-3020, 2006.
Motanis, H. and Maroun, M. Differential involvement of protein synthesis and actin rearrangement in the reacquisition of contextual fear conditioning. Hippocampus. 22:494-500, 2011.
Nader, K., Schafe G.E. and LeDoux, J.E. The labile nature of consolidation theory. Nat. Rev. Neurosci. 1: 216-219, 2000.
Parsons, R.G., Gafford, G.M., Baruch, D.E., Riedner, B.A. and Helmstetter, F.J. Long-term stability of fear memory depends on the synthesis of protein but not mRNA in the amygdala. Eur. J. Neurosci. 23: 1853-1859, 2006.
Rehberg, K., Bergado-Acosta, J.R., Koch, J.C. and Sork, O. Disruption of fear memory consolidation and reconsolidation by actin filament arrest in the basolateral amygdala. Neurobiol. Learn. Mem. 94: 117-126, 2010.
Sara, S.J. Retrieval and reconsolidation: toward a neurobiology of remembering. Learn. Mem. 7: 73-84, 2000.
Theberge, F.R., Milton, A.L., Belin, D., Lee, J.L. and Everitt, B.J. The basolateral amygdala and nucleus accumbens core mediate dissociable aspects of drug memory reconsolidation. Learn. Mem. 17: 444-453, 2010.
Thompson, B.L., Erickson, K., Schulkin, J. and Rosen, J.B. Corticosterone facilitates retention of contextually conditioned fear and increases CRH mRNA expression in the amygdala. Behav Brain Res. 149: 209-215, 2004.
Tronson, N.C. and Taylor, J.R. Molecular mechanisms of memory reconsolidation. Nat. Rev. Neurosci. 8: 262-275, 2007.
Von-der-Goltz, C. and Kiefer, F. Learning and memory in the aetiopathogenesis of addiction: future implications for therapy? Eur. Archi. Psychit. Clin. Neurosci. 259S2: S183-S187, 2009.
Wang, S.H., de-Oliveira-Alvares, L. and Nader, K. Cellular and systems mechanisms of memory strength as a constraint on auditory fear reconsolidation. Nat. Neurosci. 12: 905-912, 2009.
Yim, A.J., Moraes, C.R., Ferreira, T.L. and Oliveira, M.G. Protein synthesis inhibition in the basolateral amygdala following retrieval does not impair expression of morphine-associated conditioned place preference. Behav. Brain Res. 171: 162-169, 2006.
附錄參考資料:
Alzheimer, A. Uber eine eigenartig Erkrankung der Hirnrinde. Allg. Z. Psychiatrie Psych. Ger. Med. 64:146–148, 1907.
Bailey, T.L. Bailey TL, Rivara CB, Rocher AB, Hof PR. The nature and effects of cortical microvascular pathology in aging and Alzheimer’s disease. Neurol. Res. 26:573–578, 2004.
Balla, J., Jacob, H.S., Balla, G., Nath, K., Eaton, J.W., Vercellotti, G.M. Endothelial-cell heme uptake from heme proteins: induction of sensitization and desensitization to oxidant damage. Proc. Natl. Acad. Sci. 90:9285–9289, 1993.
Biagioli M, Pinto M, Cesselli D, Zaninello M, Lazarevic D, Roncaglia P, et al: Unexpected expression of α- and β-globin in mesencephalic dopaminergic neurons and glial cells. Proceedings of the National Academy of Sciences. 106:15454-15459, 2009.
Blalock EM, Chen KC, Sharrow K, Herman JP, Porter NM, Foster TC, et al: Gene microarrays in hippocampal aging: statistical profiling identifies novel processes correlated with cognitive impairment. J Neurosci. 23:3807-3819, 2003.
Bosman, G.J., Bartholomeus, I.G., de Man, A.J., van Kalmthout, P.J., de Grip, W.J. Erythrocyte membrane characteristics indicate abnormal cellular aging in patients with Alzheimer’s disease. Neurobiol. Aging. 12:13–18, 1991.
Casserly, I. and Topol, E. Convergence of atherosclerosis and Alzheimer’s disease: inflammation, cholesterol, and misfolded proteins. Lancet. 363:1139–1146, 2004.
Cullen, K.M., Kocsi, Z., Stone, J. Pericapillary haem-rich deposits: evidence for microhaemorrhages in aging human cerebral cortex. J. Cereb. Blood Flow Metab. 25:1656–1667, 2005.
Davis, J. et al. Early-onset and robust cerebral microvascular accumulation of amyloid b-protein in transgenic mice expressing low levels of a vasculotropic Dutch/Iowa mutant form of amyloid b-protein precursor. J. Biol. Chem. 279:20296–20306, 2004.
Deane, R. et al. LRP/amyloid b-peptide interaction mediates differential brain efflux of Ab isoforms. Neuron 43:333–344, 2004.
de la Torre, J.C. Alzheimer’s disease is a vasocognopathy: a new term to describe its nature. Neurol. Res. 26:517–524, 2004.
Everse, J., Hsia, N. The toxicities of native and modified hemoglobins. Free Radic. Biol. Med. 22:1075–1099, 1997.
Farkas, E. and Luiten, P.G. Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog. Neurobiol. 64:575–611, 2001.
Goodall, H.B., Reid, A.H., Findlay, D.J., Hind, C., Kay, J., Coghill, G. Irregular distortion of the erythrocytes (acanthocytes, spur cells) in senile dementia. Dis. Markers. 12:23–41, 1994.
Gorelick, P.B. Risk factors for vascular dementia and Alzheimer’s disease. Stroke. 35:2620–2622, 2004.
Greenberg SM, Gurol ME, Rosand J, Smith EE. Amyloid angiopathy-related vascular cognitive impairment. Stroke. 35:2616–2619, 2004.
Hardy, J. and Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 297:353–356, 2002.
Hof, P.R. and Morrison, J.H. The aging brain: morphomolecular senescence of cortical circuits. Trends Neurosci. 27:607–613, 2004.
Jankowsky JL, Slunt HH, Ratovitski T, Jenkins NA, Copeland NG, Borchelt DR. Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomol Eng. 17:157-65, 2001
Kalback, W. et al. Atherosclerosis, vascular amyloidosis and brain hypoperfusion in the pathogenesis of sporadic Alzheimer’s disease. Neurol. Res. 26:525–539, 2004.
Karelin AA, Philippova MM, Karelina EV, Ivanov VT: Isolation of endogenous hemorphin-related hemoglobin fragments from bovine brain. Biochem Biophys Res Commun. 202:410-415, 1994.
Kuo, Y.M., Kokjohn, T.A., Kalback,W., Luehrs, D., Galasko, D.R., Chevallier, N., Koo, E.H., Emmerling, M.R., Roher, A.E. Amyloid- peptides interact with plasma proteins and erythrocytes: implications for their quantitation in plasma. Biochem. Biophys. Res. Commun. 268:750–756, 2000.
Liu, X., Spolarics, Z. Methemoglobin is a potent activator of endothelial cells by stimulating IL-6 and IL-8 production and E-selectin membrane expression. Am. J. Physiol. Cell Physiol. 285:1036–1046, 2003.
Lu T, Pan Y, Kao S-Y, Li C, Kohane I, Chan J, et al: Gene regulation and DNA damage in the ageing human brain. Nature. 429:883-891, 2004.
Mattson, M.P., Begley, J.G., Mark, R.J., Furukawa, K. Abeta25-35 induces rapid lysis of red blood cells: contrast with Abeta1-42 and examination of underlying mechanisms. Brain Res. 771:147–153, 1997.
Miao, J., Vitek, M.P., Xu, F., Previti, M.L., Davis, J., Van Nostrand, W.E. Reducing cerebral microvascular amyloid-beta protein deposition diminishes regional neuroinflammation in vasculotropic mutant amyloid precursor protein transgenic mice. J. Neurosci. 25:6271–6277, 2005.
Nalivaevaa NN, Fisk L, Kochkina EG, Plesneva SA, Zhuravin IA, Babusikova E, Dobrota D, Turner AJ. Effect of hypoxia/ischemia and hypoxic preconditioning/reperfusion on expression of some amyloid-degrading enzymes. Ann N Y Acad Sci. 1035:21-33, 2004.
Nicoll, J.A., Yamada, M., Frackowiak, J., Mazur-Kolecka, B.,Weller, R.O. Cerebral amyloid angiopathy plays a direct role in the pathogenesis of Alzheimer’s disease. Pro-CAA position statement. Neurobiol. Aging. 25:589–597, 2004.
Ono T, Cutler RG: Age-dependent relazation of gene repression: increase of endogenous murine leukemia virus-related and globin-related RNA in brain and liver of mice. Proceedings of the National Academy of Sciences. 75:4431-4435, 1978.
Oyama R, Yamamoto H, Titani K: Glutamine synthetase, hemoglobin alpha-chain, and macrophage migration inhibitory factor binding to amyloid beta-protein: their identification in rat brain by a novel affinity chromatography and in Alzheimer's disease brain by immunoprecipitation. Biochim Biophys Acta. 1479:91-102, 2000.
Paris, D. et al. Impaired angiogenesis in a transgenic mouse model of cerebral amyloidosis. Neurosci. Lett. 366:80–85, 2004.
Paris, D. et al. Inhibition of angiogenesis by Ab peptides. Angiogenesis 7:75–85, 2004.
Poljak, A., McLean, C.A., Sachdev, P., Brodaty, H., Smythe, G.A. Quantification of hemorphins in Alzheimer’s disease brains. J. Neurosci. Res. 75:704–714, 2004.
Ravi, L.B., Poosala, S., Ahn, D., Chrest, F.J., Spangler, E.L., Jayakumar, R., Nagababu, E., Mohanty, J.G., Talan, M., Ingram, D.K., Rifkind, J.M. Red cell interactions with amyloid-beta(1-40) fibrils in a murine model. Neurobiol. Dis. 19:28–37, 2005.
Raymackers J, Daniels A, De Brabandere V, Missiaen C, Dauwe M, Verhaert P, et al: Identification of two-dimensionally separated human cerebrospinal fluid proteins by N-terminal sequencing, matrix-assisted laser desorption/ionization--mass spectrometry, nanoliquid chromatography-electrospray ionization-time of flight-mass spectrometry, and tandem mass spectrometry. Electrophoresis. 21:2266-2283, 2000.
Regan, R.F., Panter, S.S. Hemoglobin potentiates excitotoxic injury in cortical cell culture. J. Neurotrauma 13:223–231, 1996.
Richter F, Meurers BH, Zhu C, Medvedeva VP, M. C: Neurons express hemoglobin α- and β-chains in rat and human brains. J Comp Neurol. 515:538-547, 2009.
Roher, A.E. et al. Atherosclerosis of cerebral arteries in Alzheimer’s disease. Stroke 35:2623–2627, 2004.
Rosenberg GA, Mun-Bryce S, Wesley M, Kornfeld M. Collagenase-induced intracerebral hemorrhage in rats. Stroke. 21:801-7, 1990.
Rother, R.P., Bell, L., Hillmen, P., Gladwin, M.T. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA. 293:1653–1662, 2005.
Schonberger, S.J., Edgar, P.F.,Kydd, R., Faull, R.L., Cooper, G.J. Proteomic analysis of the brain in Alzheimer’s disease: molecular phenotype of a complex disease process. Proteomics. 1:1519–1528, 2001.
Slemmon JR, Hughes CM, Campbell GA, Flood DG: Increased levels of hemoglobin-derived and other peptides in Alzheimer's disease cerebellum. J Neurosci. 14:2225-2235, 1994.
Tanzi, R.E. et al. Clearance of Alzheimer’s Ab peptide: the many roads to perdition. Neuron 43:605–608, 2004.
van Groen T, Kiliaan AJ, Kadish I. Deposition of mouse amyloid beta in human APP/PS1 double and single AD model transgenic mice. Neurobiol Dis. 23:653-62, 2006.
Vinters, H.V. and Farag, E.S. Amyloidosis of cerebral arteries. Adv. Neurol. 92, 105–112, 2003.
Wu, C.W., Liao, P.C., Yu, L.,Wang, S.T., Chen, S.T.,Wu, C.M., Kuo, Y.M. Hemoglobin promotes Abeta oligomer formation and localizes in neurons and amyloid deposits. Neurobiol. Dis. 17:367–377, 2004.
Zlokovic, B.V. Clearing amyloid through the blood–brain barrier. J. Neurochem. 89:807–811, 2004.
校內:2017-07-13公開