簡易檢索 / 詳目顯示

研究生: 黃宏瑋
Huang, Hung-Wei
論文名稱: 輔以半自動知識擷取機制之知識管理系統
Knowledge management system with semi-automatically knowledge capturing
指導教授: 李昇暾
Li, Sheng-Tun
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理研究所
Institute of Information Management
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 51
中文關鍵詞: 知識擷取資訊檢索知識管理案例式推理
外文關鍵詞: knowledge capturing, information retrieval, knowledge management, case-based reasoning
相關次數: 點閱:80下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,企業開始逐漸重視知識管理相關議題,建置其企業內部的知識管理系統。對企業而言,將組織內的知識加以擷取、驗證、儲存、散佈,是企業面對快速變動的環境下,所須具備的必要條件。企業內部對於其知識資產的表達,通常以案例(Cases)或是Lessons的方式,來紀錄企業內對於一個經驗學習、錯誤決策反思、良好的決策方針指引。這些知識案例將隨著時間逐漸累積到達一個龐大的數量,而該知識案例庫將扮演重要的角色—當企業未來面對一個新問題,即可依賴這些既有的知識案例,尋求一個最極為類似之既有知識案例來加以參考,解決現今所面對的新問題,此步驟也正與知識管理循環互相呼應。
    過去大部分知識管理系統內的知識案例,其屬性值都以數值為主,而且屬性的選擇,以及表達方式,都是以一種比較僵固的設計方式,來決定出這些案例該用哪些屬性表達與呈現。這些所被選擇出來的屬性,對於該案例內的語意表達,通常明顯不足,抑或沒有非常相關。本研究著重在於將知識案例重新做屬性擷取動作,經由領域專家協助,透過知識擷取分析技術,將領域專家對於該領域問題之重要概念屬性加以擷取與塑模,使其能充分表達該案例內容的語意關係程度。透過此機制,來提升案例搜尋的準確度。基於此種運作機制,知識案例的記載不再侷限於傳統以數值呈現的屬性,對於以較具描述性質的屬性也能夠透過知識擷取技術來處理。
    因此,本研究使領域專家透過知識擷取技術,系統化的獲取專家之內隱知識,將其內隱知識加以外顯化,並將該外顯化後之知識結構應用於於知識案例的擷取,同時伴以使用者資訊回饋機制運作,提升知識案例擷取品質。

    In recent years, the enterprise gradually places importance on the issue of knowledge management and builds various knowledge management systems to support it. It is a essential condition to retrieval, verify, store and spread knowledge in enterprises for surviving under this fast-changing environment. The enterprise regularly records and stores its knowledge properties in the form of cases or lessons, and relies on the knowledge management system to perform its knowledge management.
    Those cases or lessons are accumulated with time, and the knowledge case base plays an important role—finding a most-similar knowledge case for referencing when the enterprise facing a new problem in the feature, this step matches the meaning with the knowledge management.
    In the past, the attributes of cases in those systems are mainly in the form of number value, and the choice and expression of attributes are designed inflexibly. Those high-abstracted attributes chosen for cases’ expression are usually insufficient or irrelevant in general. This research emphasizes on re-elicitation of attributes on those knowledge cases, uses knowledge capturing via the support of domain expert, elicits and models the important concepts of domain problems, and makes those concepts can sufficiently express the content of knowledge cases. Through this mechanism, the knowledge management system can improve the accuracy of knowledge cases’ searching, and the expression of cases can use more descriptive attributes instead of traditional attributes by information retrieval.
    Therefore, this research transfers domain expert’ implicit knowledge to explicit knowledge structure via knowledge capturing, uses this explicit knowledge structure and user feedback information to improve the query quality of case retrieval.

    摘要............................................I ABSTRACT........................................II 致謝............................................IV 目錄............................................V 圖目錄..........................................VII 表目錄..........................................VIII 第一章 緒論.....................................1 第一節 研究背景與動機...........................1 第二節 研究目的.................................2 第三節 研究範圍與限制...........................4 第四節 研究流程.................................4 第二章 文獻探討.................................6 第一節 知識擷取法...............................6 一、 凱利方格...................................7 二、 凱利方格分析...............................9 三、 凱利方格分析相關議題.......................10 第二節 案例式推理與知識管理.....................11 一、 案例式推理與其特質.........................12 二、 案例式推理流程.............................12 三、 案例索引與相似度設計.......................15 四、 案例式擷取相關研究.........................16 第三節 資訊擷取.................................16 一、 向量空間模型(Vector Space Model)...........17 二、 相似度計算.................................18 三、 查詢修正...................................19 第三章 研究方法.................................21 第一節 知識擷取—凱利方格分析...................21 一、 三元比較擷取法 (Triad comparison)..........22 二、 constructs相似偵測處理.....................23 三、 主成份分析.................................23 四、 概念分群...................................24 第二節 概念導引輔助知識案例擷取.................25 一、 知識案例預先處理...........................25 二、 案例特徵表達轉換...........................26 三、 概念導引輔助機制...........................27 第三節 系統架構圖...............................29 第四章 實作與實驗測試...........................32 第一節 系統實作.................................32 一、 系統開發環境...............................32 二、 資料收集與前置處理.........................33 三、 凱利方格建立與分析.........................33 四、 概念群集...................................36 第二節 實驗測試.................................37 一、 實驗設計...................................37 二、 實驗結果...................................42 第五章 結論與建議...............................45 第一節 結論.....................................45 第二節 未來研究方向.............................45 一、 多人凱利方格的進行.........................45 二、 領域認知結構形成方式.......................46 參考文獻........................................47

    Aamodt, A., & Plaza, E. (1994). Case-Based Reasoning: Foundational Issues,
    Methodological Variations, and Systems Approaches, Artifical Intelligence Communications, 7(1), 39-59

    Abdullah, R.,Selamat, M. H., Sahibudin, S., & Alias, R. A. (2005). A Framework For Knowledge Management System Implementation In Collaborative Environment For Higher Learning Institution. Journal of Knowledge Management Practice, 6

    Alavi, M., & Leidner, D. (1999). Knowledge Management Systems: Issues, Challenges, and Benefits. Communication of AIS, 1(2), Article 1

    Baeza-Yates, R., & Ribeiro-Neto B. (1999) Modem Information Retrieval. New York, USA: Addison-Wesley

    Bhatia, S. K. & Deogun, J. S. (1998). Conceptual clustering in information retrieval. IEEE Transactions on Systems, Man and Cybernetics, Part B, 28(3), 427-436

    Bhatia, S. K., & Yao, Q. (1993, December). A New Approach to Knowledge Acquisition by Repertory Grids. Proceedings of the second international conference on Information and knowledge management, Washington, D.C., US

    Boose, J. H. (1985). A knowledge acquisition program for expert systems based on personal construct psychology. International Journal of Man-Machine Studies, 23(5), 495-525

    Bringmann, M.W., & Petry, F.E. (1992). A semantic network representation of personal construct systems. IEEE Transactions on Systems, Man and Cybernetics, 22(5), 1161-1168

    Chen, W.-C., Tseng, S.-S, Chang, L.-P., Hong, T.-P., & Jiang, M.-F. (2002). A parallelized indexing method for large-scale case-based reasoning. Expert Systems with Applications, 23(2), 95-102

    Cheng, C.-B. (2003). A fuzzy inference system for similarity assessment in case-based reasoning systems: An application to product design. Mathematical and Computer Modeling, 38(3-4), 385-394
    Cheung, C. F., Lee, W. B., Wang, W. M., Chu, K. F., & To, S. (2003). A multi-perspective knowledge-based system for customer service management. Expert Systems with Applications, 24(4), 457-470

    Choy, K. L., Lee, W. B., Lau, H. C. W., & Choy, L. C. (2005). A knowledge-based supplier intelligence retrieval system for outsource manufacturing. Knowledge-Based Systems, 8(1), 1-17

    Crowther, P., & Hartnett, J. (1996). Using repertory grids for knowledge acquisition for spatial expert systems. Australian and New Zealand Conference on Intelligent Information Systems, Adelaide, SA

    Crowther, P., Hartnett, J. & Williams, R. (1995, December). Teaching Repertory Grid Concepts for Knowledge Aquisition in Expert Systems – An Interactive Approach. The ASCILITE-Conference on Learning with technology, University of Melbourne, Australia

    Easterby-Smith, M., Thorpe, R., & Holman, D. (1996). Using repertory grids in management. Journal of European Industrial Training, 20(3), 3-30.

    Finnie, G., & Sun, Z. (2003). R5 model for case-based reasoning. Knowledge-Based Systems, 6(1), 59-65

    Ford, K. M., Petry, F. E., Adams-Webber, J.R. & Chang, P. J. (1991) An approach to knowledge acquisition based on the structure of personal construct systems.
    IEEE Transactions on Knowledge and Data Engineering, 3(1), 78-88

    Fu, Y., & Shen, R. (2004). GA based CBR approach in Q&A system. Expert Systems with Applications, 26(2), 167–170

    Furuya, H. & Hattori, F. (1989). knowledge acquisition system for hierarchical classification problems. Thirty-Fourth IEEE Computer Society International Conference: Intellectual Leverage, Digest of Papers, San Francisco, CA

    Gaines, B. R., & Shaw, M. L. G. (1993). Eliciting knowledge and transferring it effectively to a knowledge-based system. IEEE Transactions on Knowledge and Data Engineering, 5(1), 4-14

    Hart, A. (1992). Knowledge acquisition for expert systems. New York, USA: McGraw-Hill

    Hsu, C.-C., & Ho, C.-S. (2004). A new hybrid case-based architecture for medical diagnosis. Information Sciences, 166(1-4), 231-247

    Hudlicka, E. (1996, April). Requirements elicitation with indirect knowledge elicitation techniques: comparison of three methods. Proceedings of the 2nd International Conference on Requirements Engineering, Colorado Springs, CO

    Hudlicka, E. (1999, March). Knowledge elicitation in complex military environments. IEEE Conference and Workshop on Engineering of Computer-Based Systems, Nashville, TN

    Kelly, G. A. (1955). The Psychology of Personal Constructs. New York: Norton.

    Kim, K.-S., & Han, I. (2001). The cluster-indexing method for case-based reasoning using self-organizing maps and learning vector quantization for bond rating cases. Expert Systems with Applications, 21(3), 147-156

    Kolodner, J. L. (1993). Case-based reasoning. San Mateo, CA: Morgan Kaofmann.

    Lau, H. C. W., Wong, C. W. Y., Hui, I. k., & Pun, K. F. (2003). Design and implementation of an integrated knowledge system. Knowledge-Based Systems, 16(2) , 69-79

    Lee, M. (2003). A study of an automatic learning model of adaptation knowledge for case base reasoning. Information Sciences, 55(1-2), 61-78

    Pal, S. K., & Shiu S. C. K. (2004). Foundations of Soft Case-Based Reasoning. New Jersey: Wiley

    Park, C.-S., & Han, I. (2002). A case-based reasoning with the feature weights derived by analytic hierarchy process for bankruptcy prediction. Expert Systems with Applications,23(3), 255-264

    Rocchio, J. J. (1971). Relevance feedback in information retrieval, In The SMART Retrieval System :Experiments in Automatic Document Processing, Prentice-Hall, New Jersey, 313-323.

    Roussinov D. G., & Chen H. (1999). Document clustering for electronic meetings: an experimental comparison of two techniques, Decision Support Systems, 27(1-2), 67-79

    Reynolds, T. J., & Gutmann, J. (1988). Laddering theory, method, analysis, and interpretation. Journal of advertising research, 28(3), 11-31.

    Roh, T. H., Oh, K. J., & Han, I. (2003). The collaborative filtering recommendation based on SOM cluster-indexing CBR. Expert Systems with Applications, 25(3), 413-423

    Salton, A. Wang, & C.S. Yang. (1975).
    A vector space model for information retrieval. Journal of the American Society for Information Science, 18(11), 613-620

    Shaw, M. L. G. (1982). PLANET: some experience in creating an integrated system for repertory grid applications on a microcomputer. International Journal of
    Man-Machine Studies, 17(3), 345-360

    Shaw, M. L. G., & Gaines, B. R. (1996, October). WebGrid: Knowledge elicitation and modeling on the Web. Proceedings of WebNet 96 - World Conference of the Web Society, San Francisco, California, USA

    Shaw, M. L. G., & Thomas, L. F. (1978). FOCUS on education: An interactive computer system for the development and analysis of repertory grids. International Journal of Man-Machine Studies,10(2), 139-173.

    Shin, K.-S., & Han, I. (1999). Case-based reasoning supported by genetic algorithms for corporate bond rating. Expert Systems with Applications, 16(2), 85-95

    Thomas, L. F., & Shaw, M. L. G. (1976). FOCUS Manual. Centre for Study of Human Learning, Brunel University.

    Watson, I. (1999). Case-based reasoning is a methodology not a technology. Knowledge-Based Systems, 12(5-6), 303-308

    dWeber, R., Aha, D.W., & Becerra-Fernandez, I. (2001). Intelligent lessons learned systems. Expert Systems with Applications, 20(1), 17-34

    Yihwa, I.-L. (1990). Knowledge acquisition issues, techniques, and methodology. Proceedings of the 1990 ACM SIGBDP conference on Trends and directions in expert systems, Orlando, Florida, US

    Zbigniew, K., Maria, M.-K., Stefan, Z., & Marcin, D. (2005). CBR methodology application in an expert system for aided design ship's engine room automation. Expert Systems with Applications, 29(2), 256-263

    下載圖示 校內:2009-07-06公開
    校外:2010-07-06公開
    QR CODE